12/15/22, 11:16 PM syllabC25-2023.txt

SYLLABUS for ASTC25, Winter 2023.

```
Title: Astrophysics of Planetary Systems
Lecturer: Prof. Pawel Artymowicz
URL for *everything*: all course materials, assignments and prel. & results table is http://planets.utsc.utoronto.ca/~pawel/ASTC25
[Notice: Quercus does not have continuously updated information. We use it almost only for announcements and submission of assignments.]

Lectures (L): in AA205 on Thu 12-14
```

Lectures (L): in AA205 on Thu 12-14
Tutorials (T): in AA205 on Thu 14-15
(Notice the order of lecture & tutorial on a given day is reversed w.r.t. original UTSC course calendar which says 12-13 tut, 13-15 lec);
we start with lectures and finish with tutorial, it's more logical)

Assignments are due at 12:00 (beginning of lecture). Submit via Quercus. Calendar of Lectures (L), Tutorials (T), Assignment due dates (A): -- (no tutorial!) 12 Jan L1+2 19 Jan L3+4 T126 Jan L5+6 Т2 2 Feb L7+8 9 Feb L9+10 Т3 Α1 16 Feb L11+12 T5 A2 23 Feb ---reading week 2 Mar L13+14 T6 (midterm in class, almost 1hr, 14:05-15:00) 9 Mar L15+16 T7 16 Mar L17-18 --23 Mar L18-19 T8 [27 March=last drop date w/o penaly] 30 Mar L20-21 T9 A46 Apr L22-24 T10 xx Apr final exam:

Syllabus is subject to some change, depending mostly on how fast we cover certain material, subjects will not change. Please download

this syllabus weekly.

In parenthesis: chapt. of the Lissauer-dePater textbook to read ahead of the lecture.

- 1-2. Introduction and history
 - * Organization of the course
 - * The subject & key questions
 - * History of the idea of many worlds
 - * Newton &friends/enemies: Principia Mathem. Phil. Naturalis
- 3-4. Gravitational mechanics of planetary systems
 - * Gravitational 2-body interaction
 - * Kepler's laws with mathematical derivations
 - * The 2-body problem and the elliptic motion: E, L, vs. a, e
- 5. Elements of celestial mechanics I
 - * Tides in the solar system
 - * Disruption of satellites: the Roche limit
- 6-7. Elements of celestial mechanics II
 - * Precession of orbits and spin axes
 - * Theory of perturbations vs. numerical computations
 - * Restricted 3-body problem and the Hill problem
- 8. Orbits beyond the elliptic ones
 - * Stability of motion
 - * Lagrange points and in disk
 - * Orbital resonances and chaos
 - * The future of the solar system

12/15/22, 11:16 PM syllabC25-2023.txt

- 9-10. Formation of disks and stars (ch. 15)
 - * Giant molecular clouds
 - * Jeans instability of protostellar cloud cores
 - * Opacity-limited fragmentation
 - * Simulations & the ubiquity of protostellar disks, brown dwarfs
- 11-12. Origins: Accretion disks (ch. 15)
 - * Analogue disks: AGN/quasar disks, and their accretion
 - * Accretion disk geometry
 - * Disks as evolving, shearing flows
- 13. Formation of planets: the main scenarios (ch. 15)
 - * Accumulation versus fragmentation: scenarios for the giants
 - * Gravitational stability of protoplanetary disks
 - * From dust to planetesimals
- 14. Formation of planets: standard scenario (ch. 15)
 - * From planetesimals to planetary cores: gravitational focusing
 - * Gravitational scattering of planetesimals into Oort cloud
 - * Isolation mass: a cause of giant impact epoch
 - * Late heavy bombardment
 - * Core-instability and gas accretion onto giant planets
- 15. Solar System: Minor bodies
 - * Clearing stage and Oort cloud formation
 - * Planetoids/dwarf planets: Eris and others
 - * Kuiper belt
 - * Water in planetary systems
 - * Comets icy dirtballs or dirty iceballs?
 - * Halley, Hyakutake, Hale-Bopp, Holmes2
 - * Where do Earth's oceans come from?
 - * IDPs Interplanetary Dust Particles
 - * Asteroids, their belt & Kirkwood gaps
 - * Meteorites
- 16. Dust and planetesimals in extrasolar systems
 - * Interplanetary dust: Zodiacal light disk and Brownlee particles
 - * Vega-type systems, replenished dusty disks of planetary systems
 - * Beta Pictoris disk: evidence of planetesimals and planets
- 17. Planetary rings vs. extrasolar dust disks
 - * Saturn's rings
 - * Satellites launch waves at resonances, open gaps
 - * Rings as laboratory for disk-planet interaction
 - * Dust physics, processing, removal
- 18. Dust avalanches and irradiation instability in dusty disks
 - * Dust avalanches
 - * IRI. Role of optical thickness in instability
 - * Numerical simulations
- 19-20. Dynamics of protoplanets in disks: Migration
 - * Disk-planet interaction & diversity of exoplanets
 - * 3 different types of planet migration in disks
 - * Flow of gas around super-Earth
 - * Numerical simulations
- 21-23. Exoplanet discovery
 - * Methods: timing, radial vel., transits, microlensing, imaging
 - * Overview of results and examples of exoplanets
 - * Chemical correlations
- 24. Astrobiology and SETI
 - * Life on Earth: local or non-local origins?

12/15/22, 11:16 PM syllabC25-2023.txt

* Life elswhere: Mars, Europa, moons of exoplanets?

- * Habitable zones
- $\boldsymbol{*}$ Drake's equation, SETI and the Fermi paradox