Please Check course time table for the room number of your Lab Section and blackboard for the name and e-mail address of your TA. Announcements and some labs will be posted on Blackboard. Please check this page at a minimum weekly.

The laboratory component of BI C17 requires 3 hours of laboratory per week. The Laboratory component represents 41% of your final grade. This laboratory will provide hands on experience in basic microbiology skills. We will supplement the lectures with working examples of concepts discussed in Lectures. On occasion concepts that are most easily presented in the laboratory will be addressed in the laboratory only. **The objective of the laboratory is to provide you with a comprehensive introduction to basic techniques and concepts required for understanding bacterial physiology with an emphasis on bacterial impact on human health.** On completion of this course the student will understand concepts of microbial growth, control of microbial growth and medical microbiology. This background will provide the foundation for forth year courses in microbiology including BIOD17, BIOD26, BIOD29. Skills acquired will be useful in laboratory based jobs in industry, government microbiology laboratories, blood services and medical microbiology laboratories. Skills will also provide the foundation for graduate work in fields utilizing microorganisms.

GRADE DISTRIBUTION FOR THE LABORATORY

- Laboratory component of final exam; During exam period TBA (included with lecture exam) 15%
- Lab reports (Data Sheets and questions, graphs and calculations) 19%
- Lab participation /preparation/performance (TAs will assign flow charts/mind maps prep /summaries/class presentations/ class write ups/reflective practice) 7%

Attendance is mandatory: you require UTSC medical certificate for illness or a acceptable reason (cleared prior to the lab by Dr. Brun) for absence from the instructor. If you miss a lab which are an not excused you may not hand in the assignment. Two unexcused absences result in loss the 6% performance grade and all related grades to missed lab. One unexcused absence 3 % and all related grades. If you miss 3 laboratories you forfeit all grades related to the in lab work (26%). **Lab assignments will not be accepted late.**
For the formal report follow this procedure:
The day your report is due, hand in a hard copy to your TA and submitted to turnitin.
Each page of the report must be number and labeled with the student's name. In addition, you must initial all the pages of your hard copy. The total number of pages must be indicated on the cover of your report. The hard copy must be received by the TA on her/his hand. Please, don't pile them up on the front bench.

Use of TURNITIN

"Normally, students will be required to submit their course essays to Turnitin.com for a review of textual similarity and detection of possible plagiarism. In doing so, students will allow their essays to be included as source documents in the Turnitin.com reference database, where they will be used solely for the purpose of detecting plagiarism. The terms that apply to the University’s use of the Turnitin.com service are described on the Turnitin.com web site”.

You must inform Dr Brunt in writing if you wish to opt out and you must then provide an electronic copy of your report to Dr. Brunt

READ the academic integrity section in the lecture outline

For each laboratory Data Sheets associated with each particular Exercises are found in the section at the back of the Lab Manual "Microbiology: Laboratory Theory and Application" custom edition M. Leboffe and B. Pierce. You are strongly encouraged to fill in a data sheet for each laboratory completed during this course for preparation for the lab exam
Laboratory Assignments Summer 2015

Assignment 1 (7%) due June 2, 2015
Exercise 3-12 Morphological Unknown
Data Sheet 1%
Slides (3 slides are handed in):
Gram stain 2%
Acid-fast stain 2%
Spore stain 2%

Assignment 2 (3%) Due June 30, 2015

JS1 bacterial growth: introduction, graphs and generation time determination and short discussion

Assignment 3 (9%) Due July 21, 2015
formal research paper on effect of Antibiotic and disinfectants and to turnitin by 5 pm on the day of your lab

Ex. 2-14 Effect of disinfectants, Lab 1

Ex. 7-3 Antimicrobial susceptibility (affect of antibiotics)
Ex. JS2 β-lactamase test

TAs will go over specific requirements for assignments. An outline of the requirements for the formal report will be posted
Lab RULES (no cell phone use in the laboratory)

1. Do not bring coats, hats, etc. into the laboratory.
2. Always wear a lab coat (done up) in the laboratory with the sleeves rolled down and closed shoes. See additional laboratory requirements for full details.
3. Do not eat or drink in the laboratory.
4. Keep paper, pencils, fingers, etc. out of your mouth. Avoid using paper labels. If used, moisten with water, not your tongue.
5. Wash benches down with 70% alcohol and the beginning and end of lab as described in 12.
6. Follow directions for disposal of all material used in the laboratory. All material that has been in contact with microorganisms must be disposed of in disinfectant or autoclave bags.
7. Discard pipettes point-down, in the upright plastic pipette holders. Make sure the pipette tips are covered with disinfectant.
8. Place all test tubes containing living cells in the racks in autoclave basins;
9. Place all flasks in an upright position in the discard pans.
10. All pipette tips for micropipetters must be disposed in buckets provided
11. Microscopes must be cleaned before being put away following TA’s instructions for the correct way to put away your microscope. (see below)
12. At the beginning and end of each lab session, tidy up your work area as follows: first shut off bunsen burners. Squirt/pour an S-shape of 70% isopropanol onto the lab bench. Spread the alcohol with a paper towel to disperse over the bench top, but do not dry it with the towel. Instead, allow the alcohol to evaporate. Throw the paper towel in the dry waste bag.
13. Wash hands thoroughly with soap and water once or twice during the lab, at any time you come in contact with live cells and also just before leaving the laboratory.
14. When leaving the lab, REMOVE YOUR LAB COAT and store it in a locker in the lab if possible. Although not recommended, it is allowable to wear the lab coat in another lab course. However, DO NOT UNDER ANY CIRCUMSTANCES wear your lab coat in the cafeteria or in any other public place (e.g. the Meeting Place, Library, etc.).

HANDLING OF MICROSCOPES
1) Each microscope and the storage space for that particular microscope, will have the same identifying number
2) Your TA will assign you to a specific microscope. You are responsible for this particular microscope.
3) When finished for the day, please do the following:
 a) Center the mechanical stage
 b) Lower the light intensity to the minimum and shut off the light
 c) Using a cotton swap and alcohol wipe of the lens and the stage. Then wipe with lens paper
 d) place the lowest objective (4x) over the stage
e) Wrap the electric cord around the base
f) Turn the nosepiece relative to the base (if the nose piece swings), in the
direction instructed by the TA
(there is only one way that the microscope will fit into the storage space).
g) Hold the microscope with two hands (one hand should be under the base of
the microscope) while transporting it to the cabinet (and away from the cabinet)
H) place in the cubby hole assigned to that particular microscope

4) The TAs will check that each microscope has been put away properly.
5) Points will be deducted if the microscopes are not put away properly.

Additional laboratory requirements:

- **Lab coats** and closed shoes (no sandals) are mandatory.
 Goggles during staining and when requested by the TA.
- Hair that can fall forward must be tied back
- Please wear sleeves of the lab coat rolled down and remove your
 lab coat when class is over. Do not wear your lab coat in public
 areas e.g. the cafeteria. Please also bring a dark-coloured,
 waterproof, superfine (S) marker e.g. SHARPIE for writing on
 Petri dishes. Regular markers (for paper) and pens, do not write
 well on plastic Petri dishes and tubes. **Please wash your**
 hands using soap, once or twice during lab time and at
 the end of the lab before leaving the room.
- This course deals with potentially dangerous, generally unseen
 living organisms. Therefore, there are strict rules for working in the
 lab. Compliance with these rules is taken into account when the lab
 participation grade is determined.
- If you are caught eating or drinking you will be asked to leave your
 lab: associated lost grades
- If you are immunocompromised you must see the instructor before the lab
 begins
LAB INFORMATION AND SCHEDULE
The lab Exercises (Ex. #) are as designated in the Lab Manual. There are additional labs which will be provided as files posted a week prior to the laboratory these are designated JS.
You are responsible for all the introductory material in each relevant Section and Exercise in the lab manual, (even if it appears on pages preceding the actual exercise). You are also responsible for all Sections/Exercises, etc. of Exercises listed as "read", "read only" or "reading assignment".
- Supporting information from the custom text book also indicated where appropriate to assist with laboratory material
- Lab reviews will be held outside of the laboratory before the final exam and room permitting earlier in term.

FOR THE FIRST LABORATORY
Before coming to the first lab, please read the Introduction pages on Safety and laboratory guidelines, and Section 1 on fundamental skills as well as 2-12 theory on steam sterilization from the lab manual. Look carefully at the Figures that describe aseptic technique. You will need to be proficient at these techniques to function in the Microbiology laboratory. You are responsible for the theory of READ only laboratories

LAB SCHEDULE
Week of Laboratory Exercise(s) and Assignments
Before each laboratory read and make notes on introductory materials. We do not use all the organisms listed so your TA will go through the organisms each week

Week 1. May 12
Exercise
Section 3 Microscopy and Staining
read Lab manual pages 1-19 Chapter 3 Microscopy, staining and Classification of your text book
Ex. 3-1 The light microscope read and understand: Bring to lab a summary of the major components of the microscope and a description of how to calibrate a microscope. Hand in at the beginning of class for participation credit
Ex. 3-2 Calibration of the ocular micrometer. You must show your TA the set up for participation credit
Ex. 3-5 Smear preparation and simple stains
Ex. 3-6 The negative stain
Ex. 3-12 Wet mount and hanging drop preparations: motility vs. brownian movement
2. May 19
Section 3 Microscopy and Staining, continued
Prepare flow charts prior to lab for each of the three staining techniques and have your TA initial. Use these to do your staining
Ex. 3-7 Gram stain
Ex. 3-8 Acid fast staining procedures
Ex. 3-9 Capsule staining

3. May 26
Section 3 Microscopy and Staining, continued
Make flow chart for endospore stain (TA initials) and for the unknown identification to include in data sheet
Ex. 3-10 Endospore stain
Ex. 3-14 Morphological unknown (begin)
Inoculate Nutrient Broth and motility tube see EX 5-28

4. June 2
Section 3 Microscopy and Staining, continued
Ex. 3-14 Morphological unknown, completion – interpret 5-28 and hand in data sheet and summary, Gram stain, acid fast stain and endospore stain at the end of lab

Section 1 Fundamental Skills
Refer to pages 141-143 of your text book
Ex. 1-2 Nutrient agar and nutrient broth preparation (read)
Ex 1-3 aseptic transfer (read only);
Ex. 1-4 Spread-plate technique, organisms to be used will be assigned in lab
Ex. 1-5 Streak-plate technique, mixed population to assigned in class read appendix B and C

5. June 9
record results from week 4 Ex 1-4 and 1-5

Section 6 Quantitative Techniques
Set up:
Refer to chapter 5 pages 149-156 of your text book
Read Appendix C, D, E of manual
Ex. 6-3 Direct count
Ex. 6-1 Standard viable (plate) count (read only /data provided to do calculations)
Ex. 6-4 Closed system growth (read only)
Ex. 6-5 plaque assay, refer to page 450-451 in manual

Ex. JS1 Bacterial growth in a closed system,
Present flow chart to TA at the beginning of the laboratory part of your assignment participation

Comparison of growth at 30C and 37C. Exercise JS 1 will be posted as a file one week prior to the lab. Record O.D. measurements as described. Plates from viable counts will be incubated 24 to 48 hrs., and then stored next week. This is your assignment 2

Reading week June 16

6. **June 23**

<table>
<thead>
<tr>
<th>Section 2 Microbial Growth : Factors Affecting Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record viable counts for JS1 and plaque counts (6-5)</td>
</tr>
</tbody>
</table>

 Set up:

 - Ex. 2-9 Effect of temperature, Lab 1 *(formal lab)*
 - Ex. 2-10 Effect of pH, Lab 1 *(formal lab)*
 - Ex. 2-11 Effect of osmotic pressure, Lab 1 *(formal Lab)*
 - Ex 6-6: Thermal death time versus decimal reduction value *(formal lab)*

7. **June 30**

 Hand in Generation time exercise

 Section 2 Microbial Growth : Factors Affecting Growth killing effect and differential tests

<table>
<thead>
<tr>
<th>Data analysis: (for these exercises a class participation presentation of bench data in prep for lab report)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex. 2-9 Effect of temperature, Lab 2</td>
</tr>
<tr>
<td>Ex. 2-10 Effect of pH, Lab 2</td>
</tr>
<tr>
<td>Ex. 2-11 Effect of osmotic pressure, Lab 2</td>
</tr>
<tr>
<td>Ex. 6-6 Thermal death time versus decimal reduction value: Lab 2</td>
</tr>
</tbody>
</table>

 Set up:

 Refer to chapters 6 and 7 in your text
Ex. 2-14 Effect of disinfectants, Lab 1 (part of formal report)

Ex. 7-3 Antimicrobial susceptibility (affect of antibiotics), Lab 1 (formal report)
Ex. 5-5 Catalase test, Lab 1 (obtain results)
Ex. 5-15 Gelatinase test, Lab 1
Ex 5-24 Bacitracin Novobiocin and Optochin Susceptibility test, Read only, understand the theory
Ex. JS2 β-lactamase test (obtain results); lab posted on blackboard (formal report)
Ex 4-4 growth on Mannitol salt agar
Ex 7-1 Snyder Test lab 1

8. July 7 Microbial Growth: Factors Affecting Growth
Data analysis:
Refer to pg 145 of text for types of media
Ex. 2-14 Effect of disinfectants, Lab 2
Ex. 7-3 Effect of antibiotics, Lab 2 Ex. 5-17 Gelatinase test, Lab 2
Ex 4-4 growth on Mannitol salt agar lab 2
Ex 7-1 Snyder Test Lab2

Set up
refer to page 175 of your text book
Ex. 2-13 Ultraviolet radiation: lethal effect, Lab 1
Ex. 10-5 Ultraviolet radiation: damage and repair, lab1
Ex. 5-16 DNase test, lab 1

Medical microbiology

Ex 7-4 Clinical Biofilms
Ex. JS3 Effectiveness of hand scrubbing, Lab 1, lab posted
Ex 7-6 Epidemic simulation lab 1

9. July 14 Section 2 Microbial Growth/ section 7 Medical microbiology

Data analysis:
Ex. JS4 Effectiveness of hand scrubbing, Lab 2
Ex. 2-13 Ultraviolet radiation: lethal effect of, Lab 2
Ex. 10-5 Ultraviolet radiation damage/repair, Lab 2
Ex. 7-4 Biofilms lab 2
Ex 7-6 Epidemic simulation lab2
Ex 5-6 DNase test, lab 2
Set up: Differential tests /Medical Medical Microbiology

Flow chart required for lysozyme assay: show to TA
Ex JS5 blood agar week 1 (lab will be posted)
Ex 7-2 lysozyme Assay (completed today)
Ex 4-5 MacConkey Agar lab 1
Ex 5-27 Coagulase test Read and understand the concept

Section 10 Microbial Genetics

Ex. 10-3 Bacterial transformation (flow chart required): the pGLO system
Lab 1 (refer to chapter 9 of your text book)

10. July 21

Section 8 Microbial Genetics
refer to chapter 9 of your text book

Data analysis:
Ex. 10-3 Bacterial transformation: the pGLO system,
Lab 2 (class participation: lab bench analysis, hand in data sheet at the end of lab)
Ex JS5 blood agar Lab 2
Ex 4-5 MacConkey Agar Lab 2

Set up: Microbial Genetics/differential test
Ex. JS6 Bacterial conjugation: the transfer of antibiotic resistant plasmids between cells. Exercise will be posted

Section 9 Hematology and Serology
Ex. 11-1 Differential blood count

11. July 28

Section 8 Microbial Genetics

Data analysis:
Ex. JS6 Bacterial conjugation: the transfer of antibiotic resistant plasmids between cells, Lab 2.
Work per group prior to class discussion and hand in your interpretation

Set up
Section 9 Hematology and Serology
Ex. 11-4 Slide agglutination
Lab review for lab component of the final exam by your TA
BACTERIAL NOMENCLATURE

The proper name of an organism is composed of two words. The first word of the name refers to the *genus* to which the organism belongs, and the second word is the "specific epithet". In most cases the specific epithet used is the *species*. If the specific species has not been designated, then the second term used is the abbreviation “spp.” or "sp”. The name is italicized (or underlined in typewritten manuscripts). The genus name starts with a upper case letter, while the species name starts with a lower case letter (e.g. *Staphylococcus aureus*).

The first time that a microbial name is used in a manuscript (e.g. lab report), both names should be used. Thereafter in the manuscript, when the species is cited, the word that refers to the genus may be abbreviated by using the italicized (or underlined) capital letter, followed by a period (e.g., *S. aureus*). If confusion might result from using only the single letter to represent the genus name, the entire name should be used.

Table 1. Proper and improper usage of bacterial nomenclature in a formal report

<table>
<thead>
<tr>
<th>Correct</th>
<th>Incorrect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>Staph. aureus</td>
</tr>
<tr>
<td>Staphylococcus spp. (where species is not known)</td>
<td></td>
</tr>
</tbody>
</table>

The genus names of certain bacterial groups are used (a) as proper names as above and (b) as adjectives to describe the morphology of certain cell types. When a genus name is used as an adjective it is not capitalized, italicized nor underlined. For example:

<table>
<thead>
<tr>
<th>proper name</th>
<th>adjective</th>
<th>cell shape</th>
<th>general arrangement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus</td>
<td>bacillus</td>
<td>rod</td>
<td>single or in short chains</td>
</tr>
<tr>
<td>Diplococcus</td>
<td>diplococcus</td>
<td>coccus</td>
<td>in pairs</td>
</tr>
<tr>
<td>Streptococcus</td>
<td>streptococcus</td>
<td>coccus</td>
<td>in chains</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>staphylococcus</td>
<td>coccus</td>
<td>in clusters</td>
</tr>
</tbody>
</table>