A lecture/seminar/discussion class on the emerging field of environmental epigenetics. Course will cover basic epigenetic mechanisms, methods in epigenetic research, epigenetic control of gene function, and the role of epigenetics in normal development and human disease.

Environmental epigenetics is a new field of study focusing on mitotically or meiotically heritable changes in gene regulation caused by environmental factors. There is evidence that epigenetic changes can occur through diet, toxicants (xenobiotics) and social factors (e.g. parental care). When such factors influence brain development, they can increase the risk for psychopathology throughout the lifespan. This course will focus on the environmental epigenetic mechanisms that impact human health and disease.

Office hours: Wednesdays: 1PM-3PM or by appointment. My office is in SW-548.

Course email address: epigeneticsD19@gmail.com

Lectures: BV-363 Fridays 10am-12pm
A course calendar with the schedule for lectures and presentations will be available on Blackboard. This schedule is subject to change, so check back regularly.

- Weeks 1-2: Prof. McGowan’s lectures on (1) foundation topics in environmental epigenetics, (2) how to read/present a research article, (3) how to write a minireview.
- Weeks 3-12: Student seminars on research articles.

Textbook: There is NO textbook for this class. Prof. McGowan’s power point presentations and journal articles will be supplied on Blackboard as PDF files or linked.

Exams: There are NO exams in this class.
Grading scheme overview:

Assignments (3x5%) 15%
Seminar presentations 35%
Seminar questions 10%
Minireview 35%
Attendance 5%

100%

Deadlines (10:00AM to course email):
Take-home assignments (3): Variable, but one week after assignment.
Seminar Presentation: Choice of articles: Friday Jan 16th, 10AM.
Minireview: Topic choice: Jan 23rd, 10AM.
Abstract and Title: Jan 30th, 10AM.
First Full Paragraph (5-6 sentences) and reference list (10): Feb 27th, 10AM.
Final Document (also Hardcopy): April 6th, 10AM.

Take-home assignments: Three take-home assignments of 5 short answer questions (brief: 3-5 sentences each question) addressing one of the articles presented in the class. You will be required to answer basic questions about the background, methods used, results and conclusions of the paper. The specific paper used for the questions is Prof. McGowan’s choice, and you will have one week after assignment to submit your answers. Each assignment will contribute to 5% of your final grade (total 15%).

Seminar Presentation: Seminars will be based on research articles chosen by Prof. McGowan. Each person will lead a 15 min discussion of a research article, followed by a 10 min question period. Only a maximum of 5 minutes should be spent on the introduction. When presenting, students are expected to provide handouts, which will be given to the class at the beginning of the seminar. Seminars will be graded based on clarity, style and delivery, use of visual aids, content, and ability to answer questions. The seminar will contribute to 35% of your final grade.

Seminar Questions: An important part of your mark in this class is based on contribution to discussions. You will be graded based on the number of quality questions that you ask over the course of the student presentations. This mark contributes 10% to your final grade.

Minireview: You will complete a summary/analysis of a topic in environmental epigenetics. This could stem from the article that you will present, but it could also be on another topic (note: must at least be related to a foundation review). Choose your topic by week 3 of class (10AM Jan 23rd) and email us with your topic choice. Your Title and Abstract must be submitted by 10AM Jan 30th. The first full paragraph of your introduction (5-6 sentences) and a list of 10 references must be submitted by 10AM Feb 27th. The final document will be due the final week of class (10:00AM, Apr 3rd) both as a hard copy and emailed as a PDF file to the class email address. See the Minireview Guidelines section for detailed instructions. The minireview contributes 35% to your final grade.
Attendance: You are expected to be present on time in this seminar/discussion class. Attendance contributes 5% to your final grade.

Minireview Guidelines: A minireview is a concise, focused summary of the literature related to a question of current interest in environmental epigenetics. Scientists may read minireviews to quickly get up to speed on a particular topic that may not be their area of specialty. Sometimes minireviews also raise questions or suggest new hypotheses or attempt to reconcile conflicting data that has recently been published. Writing a minireview is a good way to organize your thoughts and summarize the knowledge you have obtained about a particular topic that you have acquired from reading the literature and thinking and discussing with others and is a good exercise in scientific writing.

Example description of a minireview (from the Journal of Biological Chemistry):

“The goal of the Minireviews is to provide a concise summary of a particular field in a manner understandable to [scientists] working in any area.”

The sections of your minireview will be as follows:

Title page (not numbered). The title page includes a clear, concise title that is comprehensible to all readers with the purpose of quickly identifying the focus of the reported work. Also include your name, student number, course (BioD19), prof, TA and date.

Body of the minireview (10 pages double spaced). Start with a Brief Abstract: Summarize what the minireview is about as concisely as possible in an introductory paragraph. Provide necessary background/context for the reader. Should indicate why the chosen topic is important and timely. **Body of the review:** This section should contain the most relevant aspects and achievements in the reviewed scientific area. The review itself should not be an assembly of detailed information but present a summarization of critically selected and evaluated literature, which should reflect the most important findings. It may be subdivided with short, informative headings.

References. You will be obliged to perform literature searches and to cite original research articles. Aim for about 20 references, at least 15 of which are primary research articles. Include a reference list at the end in one of the following styles: American Psychological Association (APA), Vancouver, Nature, and PLoS.

Additional guidelines. Submit your minireview double-spaced, with pages numbered, using 12 point font (Arial), 2 cm margins. The maximum length for the minireview is 10 pages including any Figures you make yourself and EXCLUDING the title page and references. Endnote or Mendeley (free) are useful programs for generating a reference list.
Foundation Reviews (for background information):

Choose 1 of the following to present (NO PARTICULAR ORDER):

Articles to present will be assigned on a first-come first-served basis.
Send an email with your top 3 choices to: epigeneticsD19@gmail.com
YOU CAN ALSO SUGGEST AN ARTICLE.
Deadline: Friday Jan 16th, 10AM. After the deadline, an article will be assigned to you.

Nutrition:

Illustrates the impact of methyl donors in the maternal diet on offspring DNA methylation and histone acetylation patterns, providing an important link between nutrition and gene regulation.

Describes the role of methyl donors in altering epigenetic programming of the stress response and behaviours in adult rats.

This study implicates environmental influences on developmental regulation of growth and body size as the result of broad programming events at imprinted loci.

Early life nutrition induces epigenetic changes that determine whether a honeybee will become a queen or worker bee.

Examines the effects of vitamin C on the epigenetic machinery, including micro RNA expression, in embryonic stem cells.

Study of seasonal variations in methyl-donor nutrient intake of mothers in rural Gambia around the time of conception and their influence on 13 plasma biomarkers and DNA methylation.

Xenobiotics:

Demonstrates the ability of an endocrine disruptor to induce an epigenetic transgenerational disease phenotype for four generations.

Shows that early developmental exposure to an environmental toxin can change offspring phenotype by stably altering the epigenome, an effect that can be counter-acted by maternal dietary supplements.

This study in primates finds that early exposure to lead (Pb) results in decreased DNA methyltransferase activity in the brain 23 years later.

Stress:

Describes the role of maternal care in epigenetic programming of the stress response and behaviours in rats.

These findings highlight the negative impact of early stress on behavioral responses across generations and on the regulation of DNA methylation in the germline.

Illustrates alterations in DNA methylation of placental and brain tissue following exposure to gestational stress, providing a possible mechanism mediating the long-term neurobiological effects of prenatal exposure to elevated maternal stress response activity.

Study of the transgenerational impact of exposure to maternal abuse in infancy and the role of differential methylation of a growth factor gene in the prefrontal cortex in mediating these effects.

Shows that early life stress can dynamically control DNA methylation in neurons to generate stable changes in gene expression and phenotypic alterations that are frequent features in depression.

Study of effects of the 1998 Quebec Ice Storm on methylation in T-cells and saliva of children in utero at the time.

Learning and Memory/Addiction:

Rodent study showing that environmental enrichment increases histone acetylation in the hippocampus. Histone deacetylase inhibitors induce increased spatial memory in a neurodegenerative disorder mouse model.

Illustrates the dynamic changes to DNA methylation which occur during the process of learning and the critical role of these modifications in the consolidation of memory.

Study in mice examining the particular histone deacetylase target through which histone deacetylase inhibitors exert enhancements in synaptic plasticity and memory. The authors illustrate the importance of levels of this enzyme in mediating cognitive enhancement.

In a case of sex-linked epigenetic inheritance, paternal cocaine use results in a heritable increase in cortical Bdnf gene expression that confers a cocaine-resistant phenotype in male, but not female, progeny.

This study shows that when mice are taught to fear an odor, both their offspring and the next generation are born fearing it. The gene for an olfactory receptor activated by the odor is specifically demethylated in the germ line and the olfactory circuits for detecting the odor are enhanced.

Examines the epigenetics of pair bond formation in the monogamous prairie vole, and uses a pharmacological method to alter epigenetic status and partner preference.

Examines the role of histone variant exchange in memory in a mouse model.

Human Transgenerational/Health and Disease:

These two short reports (A-B) should be considered together. The first study demonstrates an inherited disease phenotype in humans that is potentially induced by an epigenetic phenomena. The second study follows on those data with evidence of a transgenerational response to ancestors’ nutrition as a main influence on longevity.

A genome-scale analysis of differential DNA methylation in whole blood after periconceptional exposure to famine during the Dutch Hunger Winter of World War II.

Human Development/Health and Disease:

A study of genome-wide epigenetic differences among twins.

This study examined the global and locus-specific differences in DNA methylation and histone acetylation of a large cohort of monozygotic twins. They find that, compared to differences in the early years of life, older monozygous twins exhibit greater differences in their overall content and genomic distribution of 5-methylcytosine DNA and histone acetylation, affecting their gene-expression portrait.

This study examined DNA methylation at more than 700 genes in placenta and cord blood and measured gene expression levels of a subset of genes that differed in methylation levels between children conceived in vitro versus in vivo.

Genome-wide epigenetic study of the contributions of stress and other factors in early life to epigenetic variability in humans stratified by socio-economic position.

Study reporting that adult blood DNA methylation profiles show more associations with childhood socio-economic position than adult socio-economic position.

Mental health (humans):

This study examined relationships between prenatal exposure to maternal mood and the methylation status of the human glucocorticoid receptor gene in newborns and HPA stress reactivity at age three months.

The first epigenome-wide association study of AD employing a sequential replication design across multiple tissues.

Study of the interaction between childhood maltreatment and PTSD, examining genome-wide gene expression and epigenetic signatures.

This study shows epigenetic alterations of a stress-sensitive gene in the brains of suicide victims in association with early life abuse or neglect.

Genetic, tissue-specific, and intergenerational sources of epigenetic variation:

Uses computational methods and DNA methylation microarray data to examine DNA methylation status as a predictor of chronological age in a variety of tissues.

Concludes that the majority of DNA methylation differences among individuals are associated with genetic differences, and a much smaller proportion of these epigenetic differences are due to sex, imprinting or stochastic intergenerational effects.

This study investigated the contribution of heritable influences and the combined effect of environmental and stochastic factors to variation in DNA methylation of the IGF2/H19 locus.

Addresses the tissue-specific nature of epigenetic modifications by examining methylation profiles in subsets of peripheral blood cells, which are commonly used in human clinical investigations.

This study provides evidence for significant epigenetic variability in human germ cells, which warrants further research to determine whether such epigenetic patterns can be efficiently transmitted across generations and what impact inherited epigenetic individuality may have on phenotypic outcomes in health and disease.

Reports that prenatal undernutrition can compromise male germline epigenetic reprogramming and thus permanently alter DNA methylation in the sperm of adult offspring at regions resistant to zygotic reprogramming. However, persistence of altered DNA methylation into late-gestation somatic tissues of the subsequent generation is not observed.

Accessibility: Students with diverse learning styles and needs are welcome in this course. If you have a disability/health consideration that may require accommodations, please notify me and contact the AccessAbility Services Office (located in SW302) as soon as possible. I will work with you and AccessAbility services to ensure you can achieve your learning goals in this course. Enquiries are confidential, and the staff is available to assess your specific needs, provide referrals, and arrange appropriate accommodations (Tel/TTY: 416-287-7560 or ability@utsc.utoronto.ca).

Academic English Health Check: UTSC offers a free Academic English Health Check: “A quick 20-minute diagnostic instrument that you respond on the computer, and is computer-marked. You get your results within an hour through e-mail. Your results are personal to you and do not get associated with your academic record. This is just a service provided to students to know for themselves where they stand and to help direct them to support that will address their needs.” See: http://www.utsc.utoronto.ca/eld/academic-english-health-check-aehc for further details if interested.