BIOB12 H3S
Cell and Molecular Biology Laboratory
Winter 2016

Instructor: Daman Bawa
Office: SW-563B
E-mail: bawa@utsc.utoronto.ca

Lab Instructors: Alvinder Singh, Carina Carianopol, Sadek Shorbagi, and Vania Branker

Office Hours: Tuesdays 11:00 AM – 1:30 PM
Please be prepared and consult lecture materials and online sources prior to coming to the office. Appointments outside these hours can be arranged by e-mail. If the hours need to be changed during the semester, you will be notified by Blackboard.

Lecture: Monday 9:00 -10:00 AM
Room SW-319

Textbook: There is no textbook for the course. However, textbook used for BIOB10/B11 does have some good background information.

The best way to reach me outside the office hours is by e-mail. Please use your UTSC or UTORONTO e-mail account and include your course code in the subject. Emails sent from non-university accounts will not be answered.

BIOB12 is a laboratory/lecture based course. The emphasis is on the laboratory and lectures complement what is done in the laboratory each week. Assignments, term test and the final exam will be based on background material required for the laboratories and questions that directly relate to what was done in the laboratory as well as applied questions that require the background of the concepts presented in the laboratory.

Attendance in the laboratories is required. Each module in the laboratory will begin with a quiz. The questions/answers to the quizzes will be covered in the posted laboratory exercises as well as within the lecture on the related material. During lecture we will also go over specific details related to what you will do in the laboratory that week. Attendance in lecture is highly recommended to assist you in the laboratory component.
Objectives of this course: This laboratory course provides the introduction to major techniques in cell and molecular biology. Each module addresses techniques that are fundamental to carrying out laboratory based work in all types of laboratories, industry, government, clinical and research laboratories. It provides the foundation for upper year laboratory courses in biochemistry, microbiology and molecular biology. Students will be provided with hands-on experience in spectrophotometry, basic microbiology culturing techniques, DNA isolation, basic plasmid cloning, restriction endonuclease analysis, protein isolation and SDS-polyacrylamide gel analysis. Students over the course of the term will develop skills in data analysis and scientific analysis. At the completion of the course students will have a laboratory skill set that will prepare them for upper year cell and molecular biology laboratory courses and the knowledge to understand molecular biology methodology presented in upper year courses. In addition, the students will have a basic set of skills that will be useful for future employment in laboratory based careers. Moreover, the students will gain an appreciation and understanding in how to carry out work in an organized manner with attention to detail and understanding of quality control in experimentation. Each student is encouraged to ask questions, and participate in class, in laboratories and in office hours. Often times a question can lead to an interesting discussion for all students.

Lectures:

BIOB12 is a laboratory course. The material covered in the one hour lecture will relate to the laboratory techniques carried out throughout the course. It will include discussion of methodologies, theory behind the methodology and applications for the particular techniques used. Lecture gives you a chance to also ask questions regarding the theory behind the labs you will be conducting. Therefore come with questions. Lecture material will be posted on the intranet by the day of the lecture. I will cover material from laboratories. Attendance will help to put the laboratory material in context and prepare for the quizzes. The lectures come from a number of sources including primary technique papers, reviews and technical manuals. Video recordings of the lectures is not permitted.

The emphasis of the course is the laboratory, the lectures complement the laboratory.

Laboratories:

- **Attendance in labs is mandatory.** If you miss a lab you must provide a UTSC medical certificate to be excused from the lab and to be able to hand in any assignments related to that lab. The labs are full therefore you will likely not be able to makeup labs. You will lose 4% of your grade for each missed lab. You will not be allowed to hand in any assignment that relates to the missed lab or write the quiz, so the penalty may exceed the 4% state above. **Missing more than three labs with no acceptable excuse will lead to the forfeit of all laboratory related grades and the removal from the course**
- Labs run twice a week for a total of 6 hours of contact
- Laboratory exercises will be posted on the intranet at least a week prior to the date of the scheduled laboratory.
- **It is your responsibility** to come prepared each week to carry out your laboratory. The following preparation will be required:
o To have completed an introduction to each lab (a paragraph) explaining the purpose

o To have written out your own flow chart (this is what you should refer to when doing the lab). You flowchart should be written such that you should not have to refer back to your lab notes during the lab.

o When carrying out experiments you must take complete notes. Therefore, as you do the experiment you will “log it”. This means writing down in detail what you did, what you observed, times of incubations. You will have data analysis (including standard curve construction) summary / conclusion, where you analyze the data, do any graphs etc that are required. Your TA will initial this book on a regular basis and collect your books for a final grade.

- To ensure you are prepared for the lab there will also be quizzes on each lab topic (see schedule) which will test whether you have adequately prepared for the lab. Attendance at lectures will help you with the material

- Equipment in the lab is expensive. You are responsible for your equipment. Accidents can happen but most “accidents” are avoidable with proper preparation and attention to the task at hand.

For laboratory, the students will require:

1. Lab coat and closed toed shoes (no exceptions, you will be asked to leave the laboratory)
2. Safety glasses
3. A permanent black marker
4. A book for recording your work (your log book). This book can be hard or soft cover, or a binder.
5. Absolutely no food, drink, or gum chewing is permitted in the laboratory. Students will required to leave the laboratory if they eat or drink in the laboratory

Accessibility: Students with diverse learning styles and needs are welcome in this course. In particular, if you have a disability/health consideration that may require accommodations, please feel free to approach me and/or the AccessAbility Services Office as soon as possible. I will work with you and AccessAbility Services to ensure you can achieve your learning goals in this course. Enquiries are confidential. The UTSC AccessAbility Services staff (located in S302) are available by appointment to assess specific needs, provide referrals and arrange appropriate accommodations (416) 287-7560 or ability@utsc.utoronto.ca.

Academic integrity/plagiarism: Academic integrity is essential to the pursuit of learning and scholarship in a university, and to ensuring that a degree from the University of Toronto is a strong signal of each student’s individual academic achievement. As a result, the University treats cases of cheating and plagiarism very seriously. The University of Toronto’s Code of Behaviour on Academic Matters (http://www.governingcouncil.utoronto.ca/policies/behaveac.htm) outlines the behaviours

Modified from Brunt, 2011
that constitute academic dishonesty and the processes for addressing academic offences. Potential
offences include, but are not limited to:

In papers and assignments: Using someone else’s ideas or words without appropriate
acknowledgement. Submitting your own work in more than one course without the
permission of the instructor. Making up sources or facts. Obtaining or providing unauthorized
assistance on any assignment.

On tests and exams: Using or possessing unauthorized aids. Looking at someone else’s
answers during an exam or test. Misrepresenting your identity.

In academic work: Falsifying institutional documents or grades. Falsifying or altering any
documentation required by the University, including (but not limited to) doctor’s notes.

All suspected cases of academic dishonesty will be investigated following procedures outlined in the
Code of Behaviour on Academic Matters. If you have questions or concerns about what constitutes
appropriate academic behaviour or appropriate research and citation methods, you are expected to
seek out additional information on academic integrity from your instructor or from other institutional
resources (refer to: http://www.utoronto.ca/academicintegrity/resourcesforstudents.html).

Use of Turnitin.com:

"Normally, students will be required to submit their course essays to Turnitin.com for a review of
textual similarity and detection of possible plagiarism. In doing so, students will allow their essays to
be included as source documents in the Turnitin.com reference database, where they will be used
solely for the purpose of detecting plagiarism. The terms that apply to the University's use of the
Turnitin.com service are described on the Turnitin.com web site”.

If you wish to opt out of turnitin you must send me an email and then submit an electronic
copy to me.

Grade Breakdown:

Midterm (lab and lecture material): 19% (multiple choice, short answer, calculations, short
essay). **Date:** TBA

- You must contact me within 48 Hours of missing the midterm and provide me with
 the UTSC medical certificate filled in by your physician to be able to write the
 makeup exam

Final exam (lab and lecture material): 34% (multiple choice, short answer, calculations, and
short essay). The final exam will be cumulative as it relates to overlapping concepts through the
course. **Date:** TBA; during final exam period

Modified from Brunt, 2011
Quizzes: 14% (8 X 1.75%). Date will depend on your practical number.

Quiz 1: Jan 11/12 - Spectrophotometry and protein assays

Quiz 2: Jan 18/19 - Bacterial growth and enumeration

Quiz 3: Jan 25/26 - Preparation of competent cells/ transformation/ plasmid prep

Quiz 4: Feb 1/2 - Restriction enzyme analysis and gel electrophoresis

Quiz 5: Feb 22/23 - Gene regulation

Quiz 6: March 7/8 - Biochemistry module: bacterial homogenate

Quiz 7: March 9/10 - Biochemistry module: protein assay, SDS PAGE

Quiz 8: March 23/24 - Microscopy

Lab performance: 10%

- Preparation / flowchart 2%
- Technical performance 2%
- Laboratory log/ summary/data analysis 4%
- Pass/fail in lab assignments/ one minute writes 2%

- Lab notebooks will be initialed each week and TAs will keep a record throughout term, the books will be handed in during lab 12B in the week of March 28 for the final grade. If you have not kept up to date each week your marks will reflect your work.

Lab assignments: 23% (The content required for each assignment will be explained during the appropriate lecture and laboratory class.) – For due dates, please check the schedule on the next page.

1. Restriction mapping (5%)

2. Formal report on gene regulation (8.5 %)

3. Formal report on Biochemistry module (9.5 %)

Modified from Brunt, 2011
LAB SCHEDULE: The labs will run according to the following schedule. If any changes need to be made due to unforeseen circumstances, it will be posted on Blackboard.

A: designates the first lab of the week (Monday/Tuesday)
B: designates the second lab of the week (Wednesday/Thursday)

<table>
<thead>
<tr>
<th>Week of</th>
<th>Lab Week</th>
<th>Lab Exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 4</td>
<td>1A</td>
<td>No lab</td>
</tr>
<tr>
<td></td>
<td>1B</td>
<td>Chemistry problems</td>
</tr>
<tr>
<td>Jan 11</td>
<td>2A</td>
<td>Spectrophotometry and protein assays (Quiz 1)</td>
</tr>
<tr>
<td></td>
<td>2B</td>
<td>Preparation of bacterial media and plates</td>
</tr>
<tr>
<td>Jan 18</td>
<td>3A</td>
<td>Growth and enumeration of bacteria (Quiz 2)</td>
</tr>
<tr>
<td></td>
<td>3B</td>
<td>Analysis of growth data, pouring of LB/AMP plates</td>
</tr>
<tr>
<td>Jan 25</td>
<td>4A</td>
<td>Preparation of competent cells, transformation with plasmids (Quiz 3)</td>
</tr>
<tr>
<td></td>
<td>4B</td>
<td>Plasmid DNA preparation</td>
</tr>
<tr>
<td>Feb 1</td>
<td>5A</td>
<td>Restriction enzyme analysis, comparison of restricted and native plasmid DNA/gel electrophoresis (Quiz 4)</td>
</tr>
<tr>
<td></td>
<td>5B</td>
<td>Set up of multiple restriction endonuclease enzyme analysis of plasmid DNA. Theory of restriction mapping.</td>
</tr>
<tr>
<td>Feb 8</td>
<td>6A</td>
<td>Agarose gel analysis of restriction endonuclease analysis in 5A. Theory of restriction mapping.</td>
</tr>
<tr>
<td></td>
<td>6B</td>
<td>Data analysis of 5B and construction of restriction map of plasmid DNA</td>
</tr>
</tbody>
</table>

Modified from Brunt, 2011
<table>
<thead>
<tr>
<th>Date</th>
<th>Reading Week</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb 22</td>
<td>7A</td>
<td>Lac operon Gene regulation experiment 1 using wild type and mutant strains of E. coli (Quiz 5)</td>
</tr>
<tr>
<td></td>
<td>7B</td>
<td>Plan your experiment (dry lab: you will analyze results from 7A and plan your own experiment for next week)</td>
</tr>
<tr>
<td>Feb 29</td>
<td>8A</td>
<td>Student experiments in gene regulation using the Lac operon</td>
</tr>
<tr>
<td></td>
<td>8B</td>
<td>Analysis and discussion of results; discussion of requirements for lab reports. Restriction mapping assignment in class (last hour)</td>
</tr>
<tr>
<td>March 7</td>
<td>9A</td>
<td>Biochemistry module: Making a bacterial homogenate using wild type, mutant strains, recombinant strain of E. coli (Quiz 6)</td>
</tr>
<tr>
<td></td>
<td>9B</td>
<td>Biochemistry module: SDS polyacrylamide gel electrophoresis (Quiz 7). Gene regulation lab report is due</td>
</tr>
<tr>
<td>March 14</td>
<td>10A</td>
<td>Data analysis of SDS-PAGE and outline of report requirements</td>
</tr>
<tr>
<td></td>
<td>10B</td>
<td>TAs will be available for 1 hour for assistance on biochemistry module report / presentations</td>
</tr>
<tr>
<td>March 21</td>
<td>11A</td>
<td>Presentation on results from biochemistry module.</td>
</tr>
<tr>
<td></td>
<td>11B</td>
<td>Microscopy module (Quiz 8)</td>
</tr>
<tr>
<td>March 28</td>
<td>12A</td>
<td>No lab</td>
</tr>
<tr>
<td></td>
<td>12B</td>
<td>Lab report and lab books due in lab (1hr)</td>
</tr>
</tbody>
</table>
LECTURE SCHEDULE:

More than one topic may be covered in one week and some of the other topics will be covered over more than one lectures

Topic 1: Overview of the course; scientific calculations/methodologies

Topic 2: Spectrophotometry/protein assay

Topic 3: Microorganisms used in molecular biology/growth, enumeration

Topic 4: Recombinant DNA techniques: plasmid preparation, restriction digests, gel electrophoresis, restriction mapping, cloning, use of polymerases, ligases etc.

Topic 5: Gene Regulation, use of colorimetric assays

Topic 6: Biochemistry techniques: protein isolation, chromatography, dialysis, gel electrophoresis

Topic 7: Microscopy

Topic 8: Other molecular biology techniques