BIOD33H: Comparative Animal Physiology

Fall 2014

Course Instructor

Dr. Stephen Reid; Office S526; sgreid@utsc.utoronto.ca

Office Hours

Monday and Wednesday, 11:15 to 12:30 and Thursday 1:15 to 2:30 or by appointment (e-mail for an appointment)

Recommended Textbook

Animal Physiology by Hill, Wyse and Anderson. Sinauer. ISBN: 0-87893-315-8. The bookstore carries the latest version. Earlier editions are also perfectly suitable.

Evaluation

Midterm Exam #1 (held during a scheduled term-test time), 25%

This exam will cover the material from lectures 1-4.

Midterm Exam #2 (held during a scheduled term-test time), 25%

This exam will cover the material from lectures 1-8 with two-thirds of the questions coming from lectures 5-8.

Note, UTSC Scheduling typically does not release the term test schedule until late in the third week of the semester. I will announce the dates, times and locations of the midterm exams once they are released. I have requested midterm exam dates that are a minimum of one-week after the last lecture that will be covered on the exams.

Final Exam, 50%

The final exam will cover the entire course with more emphasis on lectures 9-12 and 5-8. A breakdown of the exam questions will be provided prior to the exam.

All exams will be a combination of multiple choice questions and short answer/essay questions.

Topics

A. Introduction to Comparative Physiology

- 1. August Krogh Principle
- 2. Structure Function Relationships
- 3. Time Domains of Physiological Change
- 4. Extreme Environments
- 5. Hydrothermal Vents

B. Respiratory Physiology

1. Breathing in Invertebrates

- a. Aquatic Invertebrates
- b. Insect Tracheal System

2. Breathing in Fish

- a. Water Breathing Fish
 - i) Gill Morphology
 - ii) Countercurrent Gas Exchange
 - iii) Mechanics of Breathing
 - iv) Aquatic Surface Respiration
- **b.** Air Breathing
- c. Respiratory Control Systems
 - i) Gill Chemoreceptors
 - ii) Hypoxic Ventilatory Response
 - iii) Hypercapnic Ventilatory Response
 - iv) Breathing Pattern Formation
 - v) The Root Effect
 - vi) Plasma Catecholamines during Hypoxia
 - vii) Plasma Catecholamines and Air Breathing

3. Breathing in Amphibians

- a. Gas Exchange
- **b.** Mechanics of Breathing
- c. Respiratory Control Systems

4. Breathing in Reptiles

- a. Lung Structure
- **b.** Intrapulmonary Chemoreceptors

5. Breathing in Birds

- a. Lung Structure
- **b.** Avian Respiratory Cycle
- c. Concurrent Gas Exchange

C. Cardiac and Cardiovascular Physiology

1. Mammalian Fetal Circulation

- **a.** Circulatory Structure
- **b.** Changes at Birth

2. Hearts and Circulation in Fish

- a. Teleost and Elasmobranch Hearts
- **b.** Circulatory Patterns
- **c.** Circulation in Lungfish
- **d.** Hypoxic Bradycardia

3. Hearts and Circulation in Amphibians and Reptiles

- a. Amphibian Heart Structure
- **b.** Amphibian Blood Flow Patterns
- **c.** Non-Crocodilian Reptile Hearts
- **d.** Crocodilian Reptile Hearts
 - i) Heart Structure
 - ii) Blood Flow during Normal Breathing
 - iii) Blood Flow during Breath Holds or Diving
- e. Cardiac Shunting
 - i) Left to Right and Right to Left Shunts
 - ii) Cardiorespiratory Synchrony

4. Hearts and Circulation in Invertebrates

- **a.** Cephalopod Hearts
- **b.** Neurogenic Hearts
- c. Insect Circulation

D. Animal Energetics

- 1. Measuring Metabolic Rate (short-term): Calorimetry and Respirometry
- 2. Aerobic Capacity and Swimming Performance of Tuna
- 3. Measuring Metabolic Rate (long-term): Doubly-Labeled Water Technique
- 4. Feeding and Specific Dynamic Action
 - a. Metabolic Changes during Feeding in a Python
 - b. Regulation of Heart Rate during Rest, Feeding and Exercise in a Python
- 5. Basal Metabolic Rate and Standard Metabolic Rate
- 6. Metabolic Rate and Body Size
 - a. Weight Specific Metabolic Rate: Metabolic Scaling /Allometric Relationships
 - b. Physiological and Ecological Consequences of Metabolic Scaling
 - c. Metabolic Scaling: The Same Relationship across all Forms of Life
 - d. Rubner's Surface Law, Fractal Theory and Multiple Causes Theory
- 7. Muscle Fatigue and Oxygen Deficits
- E. Thermal Regulation
- 1. Types of Heat Exchange
- 2. Heat Exchange between an Animal and its Environment
- 3. Categories and Types of Thermal Regulation
- 4. Poikilothermy / Ectothermy
 - a. Advantages of Ectothermy
 - **b.** Behavioural Thermoregulation
 - c. Acute Responses to Temperature Change
 - **d.** Chronic Responses to Temperature Change
 - e. Enzyme-Substrate Affinity
 - **f.** Homeoviscous Adaptation
 - **g.** Adaptive Responses of Poikilotherms to Freezing Conditions (9)
 - i) Extracellular versus Intracellular Freezing
 - ii) Freeze Tolerance
 - iii) Freeze Avoidance

Antifreeze Compounds

Supercooling

5. Endothermy / Homeothermy

- **a.** Advantages of Endothermy (and Heterothermy)
- **b.** The Vertebrate Thermostat
 - *i) Peripheral Thermoreceptors*
 - ii) Thermal Set-Point
 - iii) The Hypothalamus (the thermostat)
 - iv) Warm, Cold and Temperature-Insensitive Neurons
- c. Heat Transfer between an Animal and its Environment
 - i) The Thermoneutral Zone
 - ii) Linear Heat Transfer Equation
 - iii) Below the Thermoneutral Zone
- **d.** Mechanisms of Heat Production / Retention
 - i) Behavioural Mechanisms
 - ii) Changes in Blood Flow
 - iii) Shivering Thermogenesis
 - iv) Non-Shivering Thermogenesis and Brown Adipose Tissue
 - v) Regional Heterothermy and Countercurrent Heat Exchange
- **e.** Temperature Acclimation (metabolic rate and insulation)
- **f.** Controlled Hypothermy (Daily Torpor and Hibernation)
 - i) Energy Savings
 - ii) Hibernation Bouts

Euthermia

Entrance into Hibernation and Initiation of Hypometabolism

Reduction in ATP Demand / Synthesis

Maintenance of Hibernation

Arousal from Hibernation

Deep Hibernation and Linear Heat Transfer

Lipid Availability and the Dynamics of Hibernation

Heart Rate Control during a Hibernation Bout

- iii) Bear Hibernation
- g. Linear Heat Transfer above the Thermoneutral Zone
- **h.** Defenses against the Heat
 - i) Behavioural Mechanisms
 - ii) Insulatory Mechanisms
 - iii) Cycling of Body Heat
 - iv) Controlled Hyperthermia
 - v) Brain Cooling
 - vi) Active Evaporation

F. Osmoregulation

- 1. Body Fluid Compartments
- 2. Osmoregulation and Osmoconformity
- 3. Aquatic Environments
- 4. Life in Freshwater
 - a. Water Gain and Ion Loss
 - **b.** Ion-Regulatory Mechanisms in the Gills
 - i) Sodium, Potassium, Calcium, H⁺ and HCO₃⁻ Regulation
 - ii) Effects of Hypercapnia
 - iii) Effects of Softwater
 - iv) Effects of Cortisol / Growth Hormone
 - c. Ion-Regulation, Breathing and Acid-Base Balance Compromises
 - **d.** Toxic Metals and the Gills
 - e. Nitrogen Handling (
 - i) Ammonia, Urea and Uric Acid

5. Life in the Sea

- **a.** Marine Invertebrates
- **b.** Marine Teleosts
 - i) Water Loss and Ion Gain
 - ii) Drinking Sea Water to Counter Water Loss
 - iii) Gill Ion Exchange to Counter Ion Gain
- **c.** Marine Elasmobranchs
 - i) Hyperosmotic and Hypoionic to Sea Water
 - ii) Urea and TMAO Retention
 - iii) Rectal Gland for Ion Regulation
- d. Brackish Waters
- e. Marine Birds and Reptiles

6. Life on Land

- a. Deserts
- **b.** Humidic Animals
- c. Xeric Animals
 - i) Countercurrent Water Exchange in the Respiratory System
 - *ii) Water Loss (Evaporative and Excretory)*
 - iii) Water Conservation and Metabolic Water
- **d.** Urine Formation in Insects
 - i) Malpighian Tubules
 - ii) The Cryptonephridial Complex

G. Recent Advances in Comparative Physiology