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Abstract

Chronic Fatigue Syndrome (CFS), also known as myalgic encephalomyelitis, is a complex multifactorial disease that is
characterized by the persistent presence of fatigue and other particular symptoms for a minimum of 6 months. Symptoms
fail to dissipate after sufficient rest and have major effects on the daily functioning of CFS sufferers. CFS is a multi-system
disease with a heterogeneous patient population showing a wide variety of functional disabilities and its biological basis
remains poorly understood. Stable alterations in gene function in the immune system have been reported in several studies
of CFS. Epigenetic modifications have been implicated in long-term effects on gene function, however, to our knowledge,
genome-wide epigenetic modifications associated with CFS have not been explored. We examined the DNA methylome in
peripheral blood mononuclear cells isolated from CFS patients and healthy controls using the Illumina HumanMethyla-
tion450 BeadChip array, controlling for invariant probes and probes overlapping polymorphic sequences. Gene ontology
(GO) and network analysis of differentially methylated genes was performed to determine potential biological pathways
showing changes in DNA methylation in CFS. We found an increased abundance of differentially methylated genes related
to the immune response, cellular metabolism, and kinase activity. Genes associated with immune cell regulation, the largest
coordinated enrichment of differentially methylated pathways, showed hypomethylation within promoters and other gene
regulatory elements in CFS. These data are consistent with evidence of multisystem dysregulation in CFS and implicate the
involvement of DNA modifications in CFS pathology.
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Introduction

Chronic Fatigue Syndrome (CFS), also known as myalgic
encephalomyelitis, is a complex multifactorial disease that is
characterized by an unexplained fatigue lasting for a minimum of
6 months as well as the presence of at least 4 of the following
symptoms: muscle or joint pain, lack of refreshing sleep, headache,
sore throat, post-exertional malaise, tender cervical and axillary
lymph nodes, and impaired memory and concentration [1]. The
symptoms fail to dissipate after sufficient rest and have a clear
effect on daily functioning. CFS has an estimated economic impact
of $9.1 billion USD in lost productivity in the United States [2].
The biological basis of CFS remains poorly understood. Substan-
tial heterogeneity in symptoms exists among patient populations
diagnosed with CFS, suggesting that CFS dysfunctions may
involve multiple systems, including neuroendocrine, autonomic,
metabolic and neurobiological [3–5]. However, symptoms linked
to immune dysregulation and abnormalities in immune system
function are a consistent feature of CFS [6].

Studies examining gene regulation using whole blood and
peripheral blood mononuclear cells (PBMCs), composed primarily
of lymphocytes and monocytes, point towards abnormalities in

lymphocyte function in CFS. CFS sufferers exhibit disrupted
homeostasis between the Th1- (cell-mediated) and Th2- (humoral)
immune response, where CFS is associated with a predominantly
Th2-mediated immune response [7,8]. This shift towards Th2-
responses is accompanied by reported increases in anti-inflamma-
tory cytokines in CFS [7,9,10]. However, cytokine profile changes
in CFS remain unclear, as other microarray and cytokine profiling
studies have found evidence of increased pro-inflammatory
cytokine expression in CFS [11,12]. It has been reported that
natural killer cells show impaired function in CFS [8,13–15]. A
difference in CD8+ T cell activation is also a prevalent finding
among studies [11,12,15–17]. Thus, it remains unclear what
immune cell type is most relevant in CFS pathology, and
discrepancies in immunological results could be explained by
study parameters such as methodological differences, as well as
heterogeneity in clinical characteristics linked to CFS [12,13,15–
19].

An accumulating number of studies have examined epigenetic
modifications associated with immune responses in the context of
disease [20,21]. Epigenetic modifications such as DNA methyla-
tion, which mainly occurs on the cytosines of CpG dinucleotide
sites (CpG) across the genome, may regulate gene expression
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without a change in the underlying gene sequence and arise
through genetic, stochastic, and environmental factors [22]. To
our knowledge, epigenomic changes associated with CFS have not
been explored.

For this exploratory study, we selected 12 female CFS patients
and 12 healthy control females from a total of 231 patients
recruited from 4 clinical centers in order to match CFS patients
and control subjects for age and body mass index (BMI), excluding
obese subjects and subjects with a history of exposure to
immunomodulatory medications, as these conditions may alter
epigenetic and immune profiles [23–25]. Methylomes in PBMCs
were examined using the Illumina HumanMethylation450 Bead-
Chip (450 K) array, which offers coverage of more than 480,000
CpG sites and 98.9% of RefSeq genes in the human genome [26].
We performed gene ontology (GO) and gene network analysis on
differentially methylated genes in order to determine biological
pathways associated with methylation changes in CFS.

Materials and Methods

Ethics statement
This study adhered to the human experimentation guidelines as

outlined by the Helsinki Declaration of 1975. The collection and
analysis of clinical information and biological samples by the
SolveCFS BioBank was ethically approved by the University of
Toronto (IRB #27391) and the Genetic Alliance ethics review
board (IRB # IORG0003358), which approved all procedures for
obtaining written informed consent from all subjects to participate
in this study. Consent forms were signed in duplicate, with one
copy provided to subjects and one copy securely stored at the
SolveCFS Biobank.

Subjects and selection criteria
Volunteers diagnosed with CFS and healthy controls were

recruited by the SolveCFS BioBank. Comprehensive medical
histories of the volunteers were recorded, including demographic
data, age of CFS onset (if diagnosed with CFS) and medication
use. The RAND-36, a validated 36 item self-report inventory, was
used to assess health-related quality of life [27]. CFS diagnosis was
based on the Fukuda and the Canadian criteria [1,28]. Volunteers
with AIDS, HIV, and/or Hepatitis C were initially screened out.
We recruited 231 volunteers from 4 clinical centers. For this
exploratory study, we selected white female subjects, 52 years of
age or younger, non-obese (BMI,30) and with no previous
consumption of immunomodulatory medications and medications
with known effects on epigenetic mechanisms (Table S1), to
exclude factors associated with epigenetic differences and altered
immune profiles [23–25]. All CFS subjects had an infectious
phenotype where subjects reported the onset of flu-like illness prior
to CFS diagnosis. After applying these exclusion criteria, 12 CFS
patients and 12 healthy controls matched for age (within the range
of 23–52 years old) and BMI (within the range of 18.6–29.8) were
available for DNA methylation analysis.

Blood collection and PBMC isolation
Whole blood in heparanized tubes collected at 4 clinical sites

was sent to the Rutgers University Cell and DNA Repository at
ambient temperature via overnight shipping. Plasma was collected
after centrifugation and the remaining blood was diluted with
DPBS. Processing of samples followed guidelines approved by
Rutgers University (Newark, NJ). Briefly, PBMCs were isolated
using Ficoll gradient centrifugation and resuspended in 1X DPBS
+1% fetal bovine serum. A sample was taken for automatic cell

counting using a ViCell XR Viability Analyzer. Dry pellets of

106106 cells were stored at –806C after centrifugation.

Genomic DNA extraction and preparation
For each subject, genomic DNA was extracted from approx-

imately 2.506106 cells using the Omega E.Z.N.A. Tissue DNA
Kit (Omega Bio-Tek, cat. no. D3396) according to the manufac-
turer’s instructions. Genomic DNA was eluted in Tris-EDTA
buffer (10 mM Tris-CL, pH 8.5, 1 mM EDTA) and a NanoDrop
2000c spectrophotometer (Thermo Scientific, Waltham, MA,
USA) was used to check the quantity and quality of the DNA.
All samples were prepared to a minimum final concentration of
100 ng/ml, A260/A280 = 1.8–2.0, and A260/A230.2.0. When
required, DNA cleanup was performed using the MinElute
Reaction Cleanup Kit (Qiagen Canada, cat. no. 28204) according
to the manufacturer’s instructions.

Epigenomic microarray data collection
Approximately 1.5 mg of DNA was sent to Genome Québec

(Montréal, QC, Canada) on dry ice. Samples were processed
according to Genome Québec and Illumina protocols for the
Infinium HumanMethylation450 BeadChip (450 K) array. This
microarray offers coverage of more than 480,000 CpG methyl-
ation sites including promoters, untranslated regions (UTRs), first
exons, gene bodies, and CpG islands. Annotations in relation to
genic regions and CpG islands were based on annotation available
from the UCSC Genome Browser (http://genome.ucsc.edu/),
where CpG island Shores were defined as the 2 kb regions
immediately upstream (North) or downstream (South) of a CpG
island, and CpG island Shelves were defined as the 2 kb regions
immediately upstream or downstream of a CpG island shore [26].
The raw data have been deposited in Gene Expression Omnibus
(GEO) at NCBI (www.ncbi.nlm.nih.gov/geo/) under the accession
number GSE59489.

Microarray validation
Three sites that were identified as differentially methylated

between CFS patients and healthy controls were selected for
pyrosequencing based on validated primer availability from
EpigenDX (Hopkinton, MA, USA). Extracted DNA was sodium
bisulfite converted using the EZ DNA Methylation Kit according
to the manufacturer’s protocol (Zymo Research, cat. no. D5001).
EpigenDX performed pyrosequencing with the following primer
sets: HIPK3 (ADS1419-FS2), LCN2 (ADS1074-FS2), LY86
(ADS2397-FS).

Gene Ontology (GO) and network analysis
An analysis examining all GO terms was performed with

DAVID (http://david.abcc.ncifcrf.gov/) using differentially meth-
ylated probes as the gene list and the 450 K Illumina microarray
as the background. This analysis examines the statistical associ-
ation between genes in the gene list provided and GO terms and
determines the enrichment of GO terms relative to the
background gene set, as performed in several previous epigenomic
studies using the Illumina methylation microarrays [29–34]. Only
GO terms were considered when generating DAVID results, as
GO terms are consistently updated and allow for comparison
across GO analysis platforms. The DAVID results of the
differentially methylated gene list were visualized in Enrichment
Map to generate a network map of GO terms. Details of how
Enrichment Map generates network maps from GO results are
described in Merico et al. [43]. Briefly, GO terms are represented
as nodes, where node size is related to the number of genes within
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each GO term, and edges between nodes represent common
genes, where edge thickness is proportional to the number of
common genes. Overlap between GO terms is calculated by the
overlap coefficient, which best handles hierarchically-organized
gene set collections [43]. Enrichment Map aims to reduce the
redundancy found within typical GO results by grouping similar
GO terms together. Clusters that form within the network aid in
the delineation of themes associated with the GO results,
facilitating biological interpretation of the significant GO terms
associated with the differentially methylated gene list. Clusters for
the DAVID results were arranged using the yFiles Organic
algorithm and named using the WordCloud plugin, which
generates a word tag cloud from a user-defined node selection in
order to textually summarize biological themes associated with
groups of GO terms (http://baderlab.org/Software/
WordCloudPlugin). GO analysis was also performed with the
GeneMANIA plugin in Cytoscape 2.8.2 (http://www.genemania.
org/plugin/) using the 2012-08-12 human genome GeneMANIA
build as the background. An application with similar functionality
to WordCloud was not available for the GeneMANIA results.

Genes from all GO clusters and the immune cell regulation
cluster with differentially methylated CpG sites were extracted for
further analysis. Differentially methylated CpG sites from each of
these genes were examined according to methylation status (hyper-
and hypomethylated based on positive and negative beta-
difference values respectively), genic location, location relative to
a CpG island, and according to the 3 broad functional categories:
gene promoters within 1500 bp and 200 bp of the transcription
start site (TSS: TSS1500, TSS200), regulatory elements (regula-
tory: TSS1500, TSS200, 59 UTR, 39 UTR), and within the coding
regions of genes (gene body).

Statistical Analyses
DNA methylation analysis was performed using R software with

the Illumina Methylation Analyzer (IMA) package [35]. Methyl-
ation values for each of the probes on the 450 K microarray were
produced as beta-values, calculated as the ratio of methylated
probe intensity over total intensity (methylated and unmethylated)
for each probe, which range from 0 to 1 and roughly corresponds
to the methylation percentage of the probe [26]. The data was
quantile normalized and peak-corrected [36,37], and low quality
probes (detection p-value$0.01), 92,667 probes overlapping SNPs
either at or within 10 bp of the targeted CpG site, and invariable
probes with a mean beta-value $0.95 or #0.05 across case and
control samples were removed from analysis [38,39]. Sites were
considered to be differentially methylated if they met the following
selection criteria: the absolute beta-value difference between the
mean beta-values of cases and controls was greater than 0.20, p#
0.05 according to the Wilcoxon rank-sum test, and FDR#0.05
using the Benjamini-Hochberg procedure [40], following methods
used in several previous epigenomic studies [29,30,33,41,42]. Lists
of differentially methylated probes, regions, and their annotations
were generated using sitetest, outputDMfunc, regionswrapper, and
annotfunc IMA functions.

IBM SPSS software (Version 22) was used to perform statistical
analysis on average age and BMI (Student’s t-test), RAND-36
scores (Student’s t-test), and average methylation according to
pyrosequencing (Wilcoxon rank-sum test) using Bonferroni cor-
rection for multiple comparisons where applicable. GO results
from both DAVID and GeneMANIA were considered to be
significant if they survived an FDR#0.10 cutoff. DAVID GO
results were clustered using default settings of the Enrichment Map
plugin [43] in Cytoscape 2.8.2 which are: p-value cutoff = 0.005,
FDR q-value cutoff = 0.1, overlap coefficient cutoff = 0.5, and

combined constant = 0.5 to generate a network map. Differences
between cluster groups in the relative proportions of hyper- and
hypo-methylated CpG sites within each region (TSS, regulatory,
gene body) were examined with Pearson’s chi-squared tests, using
Bonferroni correction for multiple comparisons.

Results

Subject demographics, characteristics, and RAND-36
scores

Table 1 shows the demographics, diagnostic history, and
RAND-36 scores of the subjects that met criteria for this study
(see Methods). The subject groups did not significantly differ in age
and BMI. Several aspects of physical and social functioning were
impacted in CFS patients and, as assessed using the RAND-36,
were significantly different from matched healthy controls (all p’s,
0.05, Student’s t-tests). Role-Emotional and Mental Health scores
were similar between CFS patients and controls.

Identification of differentially methylated CpG sites in
CFS

After microarray normalization of the raw DNA methylation
data, 327,409 probes remained for subsequent analysis. Applying
the probe selection criteria, 1,192 CpG sites were identified as
differentially methylated between CFS patients and healthy
control subjects, corresponding to 826 genes. The list of
differentially methylated CpG sites and their respective genes
can be found in Table S2.

Region-level analysis was performed by grouping probes within
their respective annotations, and comparing average methylation
values for all CpG sites at each location between CFS patients and
healthy controls using the IMA regionswrapper function. A total of
934 differentially methylated CpG sites were found within or
proximal to genes (i.e., genic locations) and 448 differentially
methylated CpG sites were mapped with respect to their location
relative to CpG islands (i.e. CpG island locations). As shown in
Figure 1A, within genic regions, 30% of differentially methylated
regions were hypomethylated and 70% were hypermethylated
overall (Table S3). Differential methylation was localized predom-
inantly to regions 1500 bp and 200 bp proximal to transcription
start sites (31% in TSS1500 and TSS200) and more broadly
within gene regulatory elements (78% in TSS1500, TSS200,
59UTR and 39UTR). Gene bodies contained 22% of differential
methylation. Hypomethylated regions consisted of 8% of TSS
regions, 21% of gene regulatory elements and 9% of gene bodies.
Hypermethylated regions consisted of 23% of TSS regions, 57% of
gene regulatory elements and 13% of gene bodies. As shown in
Figure 1B, proximal to CpG islands, 23% of differentially
methylated regions were hypomethylated, and 77% were hyper-
methylated overall. 29% of differentially methylated CpGs were
located 2 kb upstream and downstream of CpG islands (N, S
Shores), and 71% of differentially methylated CpGs were located
2 kb upstream and downstream of CpG shores (N, S Shelves).
Within these regions, 23% of shores and shelves were hypomethy-
lated, while 77% of CpG island shores and shelves were
hypermethylated. No significant enrichment of DNA methylation
differences was observed within 1st exons or CpG islands.

Validation of microarray results by pyrosequencing
Three CpG sites that were identified as significantly different on

the array were selected for validation using pyrosequencing. These
CpG sites were mapped to the following genes (probe ID, genic
location): LY86 (cg02212836, first exon), HIPK3 (cg25600606,
gene body), and LCN2 (cg14615559, TSS200). Analysis by
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pyrosequencing confirmed the direction of methylation differences
between CFS and control subjects identified by 450 K Illumina
microarray (FDR, p,0.05), with similar methylation levels
detected by pyrosequencing (Wilcoxon rank-sum test, p,0.05;
Figure 2).

Gene pathway enrichment by differential DNA
modification in CFS

To better interpret the potential functions and interactions
between the genes that contained differentially methylated CpG
sites, GO analysis was performed using the DAVID algorithm tool
on 826 differentially methylated genes [44]. Significant GO terms
representing sets of differentially methylated genes were organized
into a network to identify major enriched biological themes. After
grouping functionally related GO terms and applying statistical
cutoffs (see Methods), 4 cluster groups were identified consisting of
a total of 57 GO terms: 4 GO terms for cellular component, 13
GO terms for positive metabolic regulation, 18 GO terms for
kinase activity, and 22 GO terms for immune cell regulation.
Figure 3 shows the resulting network map of enriched GO terms
in CFS patients compared to healthy controls, where node size
corresponds to the number of genes within the GO terms and edge
thickness represents genes in common between GO terms. The full
list of GO terms associated with Figure 3 is found in Table S4. We
also performed GO analysis with GeneMANIA [45] to compare
the DAVID results with an independent algorithm. GeneMANIA
analysis using the same differentially methylated gene list as above
generated similar results to DAVID (Table S5).

Within the 4 cluster groups, 511 unique genes containing a total
of 637 CpG sites were significantly hypermethylated among CFS
patients compared to healthy controls, and 184 unique genes
containing 237 CpGs were significantly hypomethylated. The full
list of differentially methylated genes and their associated CpG
sites is provided in Table S6. To examine the potential biological
meaning of differentially methylated CpG sites, we determined the
localization of differentially methylated CpGs in promoter regions
within 1500 bp and 200 bp of transcription start sites (TSS:
TSS1500, TSS200), in gene regulatory elements (regulatory:
TSS1500, TSS200, 59 UTR, 39 UTR) and in gene coding regions

(gene body). For hypermethylated genes, the proportion of
differentially methylated CpGs in TSS, regulatory, and gene body
regions was 73.05%, 70.83%, and 74.17%, respectively (Figure 4).
For hypomethylated genes, the proportion found within each of
these regions was 26.95% (TSS), 29.17% (regulatory), and 25.84%
(gene body).

We next examined differential methylation of specific genes
within the immune cell regulation cluster, as it showed the largest
coordinated enrichment of differentially methylated gene path-
ways, with 22 GO terms (Figure 3; Table 2). In total, the immune
cell regulation cluster contained 124 unique genes with 144
hypermethylated CpG sites and 68 unique genes with 96
hypomethylated CpG sites among CFS patients compared to
healthy controls. In genes within the immune cell regulation
cluster group, the proportions of hypermethylated CpGs in TSS,
regulatory, and gene body were 52.73%, 54.9%, and 63.77%,
respectively (Figure 4). However, the proportion of hypomethy-
lated CpGs in TSS, regulatory, and gene body regions was
47.27%, 45.09%, and 36.23%. Compared to all 4 GO cluster
groups, genes within the immune cell regulation cluster showed a
significant enrichment in the relative proportion of hypomethy-
lated CpGs in TSS and gene regulatory elements (p’s,0.0125,
Pearson Chi-Square tests) but not in gene body regions. Examples
of 10 immune genes hypermethylated and 10 immune genes
hypomethylated at gene regulatory elements are listed in Table 3,
with the full list of differentially methylated sites listed in Table S7.
Overall, a greater proportion of differentially methylated CpG
sites were hypomethylated among genes within all regions in the
immune cell regulation cluster (40%) compared to the proportion
of hypomethylated genes in all four cluster groups (27.12%),
indicating a shift towards hypomethylated immune genes in CFS
patients compared to healthy controls.

Discussion

CFS is a serious and debilitating disorder characterized by a
constellation of physical symptoms and is known to occur
following infection [46]. This study focused on a subgroup of
patients that reported sudden, infectious onset of their CFS and
were required to have post-exertional malaise lasting .24 hours,

Table 1. Demographics and RAND-36 results of subjects selected for the study.

CFS Patients Healthy Control Subjects

Male/Female 0/12 0/12

Age (years) 41.1612.0 39.769.4

BMI (kg/m2) 22.562.4 24.263.6

Physical Health Physical Functioning 38.968.7* 95.061.5

Role-Physical 14.868.5* 97.462.3

Bodily Pain 56.968.0* 87.563.6

General Health 22.566.4* 78.263.8

Mental Health Vitality 19.266.4* 71.763.8

Social Functioning 30.468.7* 91.064.1

Role-Emotional 63.9613.3 81.8610.4

Mental Health 72.064.6 78.763.8

Age CFS of first symptoms (years) 31.863.4 N/A

Age of CFS diagnosis (years) 32.6610.7 N/A

Demographic information and RAND-36 results for CFS patients and healthy control subjects selected for DNA methylome analysis. * = p,0.05, Student’s t-test, CFS
versus healthy control subjects. Data are shown as mean 6 standard error of the mean, where applicable.
doi:10.1371/journal.pone.0104757.t001
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cognitive impairment and at least 2 of these three RAND-36
scores; vitality #35, social functioning #62.5, role-physical
functioning #50. As shown in Table 1, all the physical and social

concepts measured were significantly different between patients
and controls whereas two of the mental health subscales were not
different. The fact that physical and social function are seriously

Figure 1. Distribution of differentially methylated regions in CFS. Distribution of hyper- and hypo-methylated CpG regions in CFS patients
compared to healthy control subjects according to (a) genic location 1500 bp and 200 bp relative to the transcription start site (TSS), in the 59 UTR, 39
UTR, and within gene bodies and (b) location relative to CpG islands, including 2 kb upstream and downstream of CpG islands (N, S Shore
respectively), and 2 kb upstream and downstream of CpG shores (N, S Shelf respectively). No significant differences were found within CpG islands.
doi:10.1371/journal.pone.0104757.g001
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impacted in CFS and detected using health outcome quality of life
scales has been a highly consistent finding [47]. This also indicates
that even though the sample size for this study was small, it was
carefully selected and likely representative of sudden onset CFS.

This study had several major findings. We identified differen-
tially methylated CpG sites in PBMCs of female CFS patients
compared to healthy controls, who were selected to control
potential age-, obesity-, and medication-related influences on
epigenetic profiles. We found significant differences in DNA
methylation between CFS patients and healthy controls at 1,192
CpG sits in 826 genes overall, with differential DNA methylation
present across promoters, gene regulatory elements and within
coding regions of genes. GO terms related to cellular processes,
positive metabolic regulation, kinase activity and the immune
response were enriched among CFS patients; similar GO terms
were found using quantitative trait analysis of gene expression in a
distinct CFS patient population [48]. Organizing GO results into a
network indicated an overrepresentation of terms related to
immune cell regulation, consistent with previous studies examining
functional changes in immune profiles associated with CFS
[7,11,12]. Differentially methylated genes related to immune cell
regulation showed an increased proportion of hypomethylated
CpG sites among CFS patients, particularly in promoters and in

gene regulatory elements, relative to the distribution of differen-
tially methylated sites in the network as a whole.

Differential methylation of gene regulatory elements is classi-
cally associated with alterations in gene expression [49]. In genes
within the immune cell regulation cluster, we found a number of
differentially methylated CpGs in gene regulatory elements
associated with the immune response. These data are consistent
with previous observations of a Th1- to Th2-mediated immune
response shift in CFS [7,50]. A number of studies have linked
altered immune system function with CFS [11,12] and have found
that gene expression differences in some immune genes in PBMCs
can be used to distinguish between CFS patients and healthy
controls [51,52]. Transcriptional profiling studies have indicated
perturbations in T-cell [53–55] and B-cell activation [56] and
dysregulation in gene expression broadly related to immune
responses [57], changes that parallel other studies showing altered
production of interleukin and interferon cytokines in CFS patients
[50]. Consistent with these observations, we also observed changes
in DNA methylation within a number of genes known to regulate
the adaptive immune response. For example, BCL10, FCER2,
and IL1RL1/ST2 were hypermethylated among the genes in the
immune GO cluster (Table 3). BCL10 is a known activator of the
NFkB pathway [58,59], which aligns with the immune response

Figure 2. Validation of microarray data by pyrosequencing. Validation of significant methylation differences identified by microarray (450 K)
by pyrosequencing (PS), showing the average methylation level of CpG sites within the following genes (probe ID, genic location): (a) LY86
(cg02212836, first exon), (b) HIPK3 (cg25600606, gene body), and (c) LCN2 (cg14615559, TSS200). * = FDR,0.05, 450 K; * = p,0.05, PS, Wilcoxon rank-
sum test. Error bars represent the standard error of the mean.
doi:10.1371/journal.pone.0104757.g002
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Figure 3. Clustering of DAVID GO results. Network map showing the clustering of DAVID GO results as produced by the Enrichment Map plugin
in Cytoscape 2.8.2. Significant GO term clusters were named according to textual attributes generated by the WordCloud plugin. Node size (red
circles) corresponds to the number of genes within the GO terms. Edge thickness (green lines) represents genes in common between GO terms.
doi:10.1371/journal.pone.0104757.g003

Figure 4. Distribution of differentially methylated sites in CFS according to GO clusters and functional relevance. Relative proportions
of hyper- and hypo-methylated CpG sites between CFS patients and healthy control subjects for genes associated with the immune cell regulation
cluster group (immune GO) compared to all four GO term cluster groups (all GO). Results are shown for each genic region, consisting of promoter
regions within 1500 bp and 200 bp of the transcription start sites (TSS), gene regulatory elements (regulatory: TSS1500, TSS200, 59 UTR, 39 UTR), the
coding regions of genes (gene body), as well as all regions combined (total: regulatory, gene body). * = p,0.0125, Pearson Chi-Squared Test.
doi:10.1371/journal.pone.0104757.g004
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differences seen in CFS. FCER2 has been implicated in B-cell
activation and has shown expression differences in B cells infected
by the Epstein-Barr virus [60]. Lastly, IL1RL1/ST2 is a known
Th2 cell marker [61] which activates MAP kinases [62]. At this
time, we do not know whether these epigenetic modifications are
indicative of homeostatic compensations or are the result of an
adaptive immune response to environmental exposures. These
results are consistent with DNA methylation as a potential
mechanism of long-term effects on the regulation of gene
expression and noted long-term alterations in gene expression
observed in previous studies of CFS [5,11,12,63].

Hypomethylated CpG sites were significantly enriched in
promoters and gene regulatory elements of genes related to
immune signaling. It is possible that these immune genes may
show increased transcript abundance or increased transcriptional
potential, at least among the CFS group selected in this study, as
promoter hypomethylation is generally associated with an increase
in gene expression [49]. CFS symptoms are known to worsen
causing significant debility after exertion [64], concomitant with
an increase in inflammatory gene expression [65]. Such data
suggest that latent alterations in immune system function may be
‘unmasked’ during challenge conditions. Future studies aimed at
examining the relationship between epigenetic and gene expres-
sion profiles of CFS patients under both basal and challenge

conditions will be informative in elucidating the relationship
between epigenetic mechanisms and functional changes in gene
regulation in CFS.

Epigenomic studies aimed at characterizing the properties of
immune cells have documented distinct profiles between cellular
subtypes [20,66]. Epigenetic disruptions in immune cells can lead
to chronic impairment in the function of important immune cell
subtypes [67–69], and are implicated in various disorders with an
immunological component, such as chronic depression, lupus, and
rheumatoid arthritis [20,70,71]. Although the data collected in this
study do not rule out the possibility of differential contributions of
epigenetic variation of specific subtypes of immune cells within our
mixed PBMC cell population, it is worth noting that the relevant
cell populations affected in CFS remain unknown. Nevertheless,
our data provide evidence that epigenetic variation in CFS may be
distinct, at least in part, from related disorders with an
immunological component. For example, epigenomic analysis of
whole blood in fibromyalgia (FM) patients indicated differential
methylation in genes associated with structural and nervous system
development and neuron differentiation [72]. Although FM has a
similar symptom profile compared to and is comorbid with CFS
[73], our results contribute to the growing number of studies
indicating biological differences between the two diseases [74].

Table 2. Immune cell regulation GO cluster.

GO term
Number of Differentially
Methylated Genes p-value Adjusted p-value (FDR)

GO:0042101,T cell receptor complex 7 5.71E-06 0.0026

GO:0009966,regulation of signal transduction 69 8.87E-06 0.0123

GO:0042105,alpha-beta T cell receptor complex 4 3.43E-04 0.0266

GO:0002682,regulation of immune system process 36 5.46E-05 0.0300

GO:0010646,regulation of cell communication 73 1.84E-04 0.0500

GO:0030217,T cell differentiation 12 1.57E-04 0.0532

GO:0048518,positive regulation of biological process 126 1.49E-04 0.0578

GO:0002376,immune system process 67 2.63E-04 0.0593

GO:0002521,leukocyte differentiation 17 3.11E-04 0.0602

GO:0048583,regulation of response to stimulus 39 2.93E-04 0.0610

GO:0050863,regulation of T cell activation 16 2.54E-04 0.0625

GO:0048522,positive regulation of cellular process 114 4.25E-04 0.0714

GO:0002694,regulation of leukocyte activation 19 5.08E-04 0.0758

GO:0002768,immune response-regulating cell
surface receptor signaling pathway

9 5.41E-04 0.0764

GO:0042110,T cell activation 16 5.74E-04 0.0770

GO:0050870,positive regulation of T cell activation 12 6.36E-04 0.0776

GO:0050851,antigen receptor-mediated
signaling pathway

8 6.08E-04 0.0777

GO:0030098,lymphocyte differentiation 14 8.14E-04 0.0904

GO:0051249,regulation of lymphocyte activation 17 1.03E-03 0.0951

GO:0048584,positive regulation of
response to stimulus

23 9.73E-04 0.0958

GO:0002764,immune response-regulating
signal transduction

10 9.07E-04 0.0963

GO:0050865,regulation of cell activation 19 9.57E-04 0.0977

GO terms associated with the immune cell regulation cluster for genes differentially methylated in CFS patients compared to healthy control subjects.
doi:10.1371/journal.pone.0104757.t002
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Although the immune system showed most changes in DNA
methylation, we also found an enrichment in gene sets linked to
cellular components, kinase activity, and positive metabolic
activity, supporting previous data indicating differences in the
expression of genes associated with cellular metabolism and
oxidative stress in PBMCs from CFS patients [48,51,52]. In CFS,
disruptions of pathways related to structural components of the cell
and metabolic proteins via cellular stress are linked to altered
functional outcomes [75]. For example, increased rates of
apoptosis in leukocytes have been observed in CFS, which could
be explained through elevations in protein kinase activity [76].
However, the specific role of kinases in CFS is not well understood
and more research is required to elucidate their contribution to
CFS pathology.

The results of this study do not indicate whether these observed
epigenetic differences are a cause or a consequence of CFS.
However, we provide evidence suggesting a potential role for
epigenetic alterations in the pathophysiology of CFS. We
controlled for genetic polymorphisms known to overlap with
array probes used to directly quantify DNA methylation. It
remains possible that contributions of genetic differences that are
distal from probe sites may contribute to differences in epigenetic
signaling [77]. An analysis of genome-wide genetic differences in a
CFS cohort identified 65 single nucleotide polymorphisms (SNPs)
associated with CFS located in 9 chromosomes, indicating genetic
differences across the genome may contribute to CFS pathology
[78]. However, the fact that genetic variations in only two of these
SNPs were linked to changes in gene expression suggests that other

Table 3. Immune cell regulation GO cluster genes.

Gene
Name Gene Accession Number Description

Number of
Differentially
Methylated
CpGs Genic Region

Methylation
status (CFS-CTL)

ATG7 NM_001136031/
NM_001144912/
NM_006395

ATG7 autophagy related 7
homolog (S. cerevisiae)

1 TSS1500 hypermethylated

BCL10 NM_003921 B-cell CLL/lymphoma 10 1 TSS200 hypermethylated

CD83 NM_001040280/
NM_004233

CD83 molecule 1 39 UTR hypermethylated

FCER2 NM_002002 Fc fragment of IgE, low affinity II,
receptor for (CD23)

1 TSS1500 hypermethylated

HLA-H NR_001434 major histocompatibility complex,
class I, H (pseudogene)

1 TSS200 hypermethylated

IL19 NM_153758 interleukin 19 1 TSS1500 hypermethylated

IL1RL1 NM_016232 interleukin 1 receptor-like 1 1 TSS1500 hypermethylated

LAIR1 NM_002287/
NM_021706

leukocyte-associated
immunoglobulin-like receptor 1

1 TSS1500 hypermethylated

TNFSF13B NM_001145645/
NM_006573

tumor necrosis factor (ligand)
superfamily, member 13b

1 TSS1500 hypermethylated

TREM2 NM_018965 triggering receptor expressed
on myeloid cells 2

1 TSS200 hypermethylated

CD3D NM_000732/
NM_001040651

CD3d molecule, delta
(CD3-TCR complex)

4 TSS1500 hypomethylated

CD3E NM_000733 CD3e molecule, epsilon
(CD3-TCR complex)

1 59 UTR hypomethylated

CD3G NM_000073 CD3g molecule, gamma
(CD3-TCR complex)

4 59 UTR/1st Exon hypomethylated

CD96 NM_005816/
NM_198196

CD96 molecule 1 TSS200 hypomethylated

FASLG NM_000639 Fas ligand (TNF superfamily,
member 6)

1 TSS200 hypomethylated

HLA-E NM_005516 major histocompatibility
complex, class I, E

2 39 UTR hypomethylated

ICOS NM_012092 inducible T-cell co-stimulator 1 59 UTR/1st Exon hypomethylated

LAX1 NM_001136190/
NM_017773

lymphocyte transmembrane
adaptor 1

2 59 UTR/1st Exon hypomethylated

LCK NM_005356 lymphocyte-specific
protein tyrosine kinase

2 59 UTR hypomethylated

LY9 NM_001033667/
NM_002348

lymphocyte antigen 9 1 TSS200 hypomethylated

Examples of genes within the immune cell regulation cluster differentially methylated at gene regulatory elements in CFS patients compared to healthy control
subjects.
doi:10.1371/journal.pone.0104757.t003

DNA Methylation Modifications Associated with Chronic Fatigue Syndrome

PLOS ONE | www.plosone.org 9 August 2014 | Volume 9 | Issue 8 | e104757



mechanisms of gene regulation are likely involved in CFS.
Epigenetic mediation of the connection between genotype and
phenotype has recently been proposed [79], and these relation-
ships may be worth investigating in assessments of disease and
disease risk. Examining epigenetic modifications in CFS is of
particular interest as epigenetic changes can exert long-term effects
on gene expression and are potentially amenable to therapeutic
intervention [22]. For example, therapeutic interventions targeting
epigenetic mechanisms in cancer have shown some success in
altering inflammatory pathways [80]. In particular, 5-azacytidine,
a DNA hypomethylating drug, has been shown to alter DNA
methylation of immune pathways in non-small cell lung cancer cell
lines, including genes in the viral defense, stress response, and
human leukocyte antigen (HLA) Class I processing pathways [80].
HLA-E and HLA-H, which are a part of the HLA Class I
processing pathway, were among those that showed the greatest
differences in CFS in the immune gene GO cluster (Table 3) and
could serve as potential markers for future targeted therapeutic
studies in CFS. Longitudinal studies examining differences in the
epigenomes of CFS patients in the context of variation over time
and with CFS symptomatology would help to identify these
interactions and determine the stability of the epigenomic
differences that were observed in this study.

Conclusions

To our knowledge, this is the first study that has explored
genome-wide epigenetic changes associated with CFS. Network
analysis of enriched GO terms associated with differentially
methylated genes identified GO clusters related to cell structure
and function, with the largest cluster related to the immune
response. Gene regulatory elements within the immune cluster
were significantly hypomethylated relative to the network overall.
These data are consistent with previous evidence of immunological
dysregulation in CFS and implicate the involvement of DNA
modifications in CFS pathology.
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