AtAMT1 gene expression and NH₄⁺ uptake in roots of Arabidopsis thaliana: evidence for regulation by root glutamine levels

Suman R. Rawat¹, Salim N. Silim^{1,2}, Herbert J. Kronzucker², M. Yaeesh Siddiqi¹ and Anthony D.M. Glass^{1,*}

¹Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada, and

²Department of Plant Sciences, University of Western Ontario, London, Ontario N6A 5B7, Canada

Summary

The mechanisms involved in regulating high-affinity ammonium (NH4⁺) uptake and the expression of the AtAMT1 gene encoding a putative high-affinity NH_{4}^{+} transporter were investigated in the roots of Arabidopsis thaliana. Under conditions of steady-state nitrogen (N) supply, transcript levels of the AtAMT1 gene and V_{max} values for high-affinity ¹³NH₄⁺ influx were inversely correlated with levels of N provision. Following resupply of NH₄NO₃ to N-starved plants, AtAMT1 mRNA levels and ¹³NH₄⁺ influx declined rapidly but remained high when the conversion of NH4⁺ to glutamine (GIn) was blocked with methionine sulfoximine (MSX). This result demonstrates that end products of NH4+ assimilation, rather than NH4⁺ itself, are responsible for regulating AtAMT1 gene expression. Consistent with this hypothesis, AtAMT1 gene expression and NH4⁺ influx were suppressed by provision of GIn alone, or together with NH₄NO₃ plus MSX. Furthermore, AtAMT1 transcript levels and ¹³NH₄⁺ influx were negatively correlated with root Gln concentrations, following resupply of N to N-starved plants. In addition to this level of control, the data suggest that high cytoplasmic [NH₄⁺] may inhibit NH4⁺ influx.

Introduction

Inorganic nitrogen (N) uptake by plant roots is subject to strict regulation according to whole plant demand (Crawford and Glass, 1998). There is widespread agreement that rates of NO_3^- and/or NH_4^+ uptake are determined by negative feedback from accumulated N (Glass and Siddiqi, 1995; Imsande and Touraine, 1994; Lee and Rudge, 1986; Morgan and Jackson, 1988). However, there is a lack

Received 16 March 1999; revised 17 May 1999; accepted 19 May 1999. *For correspondence (fax +604 822 6089; e-mail aglass@unixg.ubc.ca). of consensus regarding the identity of the cellular N pool(s) responsible for initiating this control. A coordinated regulation of all forms of nitrogen transport by feedback from downstream metabolites of inorganic N was proposed by Lee and Rudge (1986). The operation of a carbon/nitrogen sensor in microorganisms, the so-called PII protein, that regulates both glutamine synthetase and NH₄⁺ transport (Arcondeguy *et al.*, 1997; Magasanik, 1988) is consistent with this proposal. Recently, Hsieh *et al.* (1998) have demonstrated the presence of a putative PII homologue in *Arabidopsis thaliana*.

Cooper and Clarkson (1989) proposed that the cycling of amino acids between shoots and roots was responsible for integrating and regulating N uptake. However, others have proposed that NO_3^- , NH_4^+ and/or various amino acids may regulate inorganic N influx (see Glass and Siddiqi, 1995 for review). Furthermore, details of the underlying molecular mechanisms responsible for these putative feedback loops are rudimentary. Such details will facilitate attempts to improve nutrient uptake efficiency in transgenic crop plants, overexpressing particular ion transporters.

The cloning of genes that encode the NO_3^- and NH_4^+ transporters (Ninnemann et al., 1994; Trueman et al., 1996) now makes it possible to evaluate the mechanism(s) responsible for these control systems at the molecular level. Here we focus on a putative high-affinity NH₄⁺ transporter. The importance of NH4⁺ as a direct source of N for plant growth has been substantially underestimated. In many soils, NO_3^- is undetectable, and NH_4^+ and amino acids represent the main sources of N for plant nutrition (Glass and Siddigi, 1995; Kielland, 1994; Stark and Hart, 1997). Furthermore, in agricultural soils where both NO₃⁻ and NH_4^+ are present, NH_4^+ strongly inhibits NO_3^- uptake (Aslam et al., 1996; Lee and Drew, 1989). Thus, the uptake of NH4⁺ and particularly the regulation of this uptake at the physiological and molecular levels warrants much greater attention.

Genes encoding NH_4^+ transport systems have been isolated and characterized in *Saccharomyces cerevisiae* and other microorganisms (Arcondeguy *et al.*, 1997; Dubois and Grenson, 1979; Marini *et al.*, 1994; Marini *et al.*, 1997). Three such genes, namely *MEP1*, *MEP2* and *MEP3*, which are thought to encode two high-affinity transport systems and a low affinity-system, respectively, have been cloned from *S. cerevisiae* (Dubois and Grenson, 1979; Marini *et al.*, 1994; Marini *et al.*, 1997). In higher plants, a putative high-affinity NH₄⁺ transporter gene (*AtAMT1*) was cloned from *A. thaliana* by heterologous complementation of the *mep1-1 mep2-1* NH_4^+ transport mutant of *S. cerevisiae* (Ninneman *et al.*, 1994). The predicted sequence of the AtAmt1 transporter was homologous with the Mep1 NH_4^+ transport protein from *S. cerevisiae*. Furthermore, when expressed heterologously in the *mep1-1 mep2-1* double mutant, it functioned as a saturable high-affinity transporter capable of restoring ¹⁴C-methylamine uptake in the yeast mutant.

A root-specific homologue (*LeAMT1*) has also been isolated from *Lycopersicon esculentum* (Lauter *et al.*, 1996). In addition to the *AMT1* gene homologues, a peribacteroid NH_4^+ channel encoded by the *GmSAT1* gene transports NH_4^+ across the peribacteroid membrane from the bacteroid to the host plant in soybean (Kaiser *et al.*, 1998). This gene has no homology with the *AtAMT1* gene.

The paucity of information concerning the regulation of AtAMT1 gene expression, together with the lack of agreement regarding the control of NH4⁺ influx from physiological studies, prompted our investigation of the putative regulatory mechanism(s). Preliminary results using heterologous expression of the AtAMT1 gene in S. cerevisiae indicated that NH₄⁺ transport in cells grown in the presence of NH_4^+ was not subject to down-regulation, and the authors proposed the measurement of AMT1 expression directly in plants subjected to different nutritional conditions (Ninnemann et al., 1994). Here we report the results of such a study of AtAMT1 gene expression integrated with physiological studies of ¹³NH₄⁺ influx and biochemical analyses of tissue N pools in the roots of A. thaliana. These results demonstrate that AtAMT1 transcript levels are not regulated by tissue NH4⁺ concentrations, but rather by Gln. Nevertheless, high levels of accumulated NH₄⁺ may exert inhibitory effects, possibly post-translational or allosteric effects, at the level of the high-affinity transport protein.

Results

Transmembrane fluxes and compartmentation of NH₄⁺

Standard compartmental analyses (Kronzucker *et al.*, 1995; Wang *et al.*, 1993a) were undertaken using intact roots to develop protocols for estimating plasma membrane ¹³NH₄⁺ influx and cellular turnover rates for NH₄⁺. Typically, approximately 98% of ¹³N effluxing from the cytoplasmic compartment of ¹³NH₄⁺-labeled *Arabidopsis* roots consisted of ¹³NH₄⁺. Semi-log plots of this ¹³NH₄⁺ efflux against time generated t_{0.5} values for cell wall and cytoplasmic ¹³NH₄⁺ exchange of 39 ± 3 sec and 12.6 ± 0.5 min, respectively, in roots of plants provided with 100 μ M NH₄NO₃. Corresponding values for 1 mM NH₄NO₃-grown plants were not significantly

Table 1. NH_4^+ fluxes (µmol g⁻¹ FW h⁻¹) and cytoplasmic [NH_4^+] (µmol g⁻¹ FW) derived from compartmental analysis using roots of *A. thaliana*

Parameter	100 μM plants	1mм plants	
φος	5.2 ± 1.6	9.5 ± 2.1	
φ _{co}	$\textbf{0.7} \pm \textbf{0.2}$	3.3 ± 1.3	
φ _{net}	4.5 ± 1.4	6.2 ± 1.3	
t _{0.5} (cell wall)	39 ± 3 s	$36\pm5~s$	
t _{0.5} (cytoplasm)	$12.6\pm0.5min$	$10.8\pm1.1min$	
[NH4 ⁺] _{cyt}	$22\pm4\text{mM}$	$43\pm8\text{mM}$	

Plants were grown in 100 μ M (*n*=6) or 1 mM (*n*=11) NH₄NO₃. φ_{oc} : influx of NH₄⁺ across the plasma membrane from cell wall to cytosol, φ_{co} : efflux across the plasma membrane from cytosol to cell wall; φ_{net} : net flux across the plasma membrane from cell wall to cytosol, [NH₄⁺]_{cyt}: cytoplasmic [NH₄⁺]. Fluxes were measured under steady state conditions.

different, as shown in Table 1. These values are similar to those obtained from previous studies (Kronzucker etal., 1995; Presland and McNaughton, 1986; Wang et al., 1993a). Flux values (Table 1) calculated from efflux analysis indicated a high value for plasma membrane NH_4^+ influx (5.2 ± 1.6 μ mol g⁻¹ FW h⁻¹) and net uptake $(4.5 \pm 1.37 \mu mol g^{-1} FW h^{-1})$ into roots of plants 100 μм NH₄NO₃. acclimated in Efflux values $(0.7\pm0.2\,\mu mol~g^{-1}$ FW $h^{-1})$ were relatively low, while cytoplasmic NH4⁺ concentrations were estimated to be 22 ± 4 mM. Cytoplasmic values for [NH₄⁺] were in the same range as those estimated by NMR using maize roots (Lee et al., 1992). Steady state growth at 1 mM NH₄NO₃ increased influx, efflux, cytoplasmic [NH₄⁺] and the ratio of efflux to influx, as observed in previous studies (Kronzucker et al., 1995; Wang et al., 1993a).

The high-affinity NH_4^+ transport system (HATS): regulation of AtAMT1 mRNA levels and NH_4^+ influx by N supply

Northern analyses of root AtAMT1 gene expression in plants maintained in $100 \,\mu$ M NH₄NO₃ revealed an abundant 1.8 kb transcript (Figure 1a), whose intensity was reduced to approximately 7% of this value by provision of 1 mM or 10 mM NH₄NO₃. Short-term measures of high-affinity ¹³NH₄⁺ influx revealed a hyperbolic pattern (Figure 1b), with K_m and V_{max} values (derived from direct fits to the Michaelis–Menten equation) of 168 μ M and 17 μ mol g⁻¹ FW h⁻¹, respectively, for plants previously grown in 100 μ M NH₄NO₃. V_{max} values were reduced to 6.1 and 3.1 μ mol g⁻¹ FW h⁻¹ in plants maintained in 1 mM and 10 mM NH₄NO₃. Statistical testing of the differences among K_m and V_{max} values by *F*-tests of the slopes of Hoffstee and Hanes plots,

Figure 1. Accumulation of *AtAMT1* mRNA and short-term $^{13}NH_4^+$ influx (µmol g⁻¹ FW h⁻¹) into roots of *A. thaliana* as a function of prior N provision.

(a) Northern blot analysis of root total RNA, probed with the *AtAMT1* cDNA. RNA molecular size standards are indicated on the left. The same Northern blot was reprobed with *At25S rDNA*, used as internal standard. (b) ¹³NH₄⁺ influx into roots of plants grown in 0.1 mM, 1 mM and 10 mM NH₄NO₃. ¹³NH₄⁺ influx values are means \pm SEM (*n*=4). Each flux experiment was repeated three times.

respectively, revealed significant differences only among V_{max} values.

Time-dependent up-regulation and down-regulation of AtAMT1 mRNAs and high-affinity NH_4^+ influx on withdrawal or resupply of NH_4NO_3

Transfer of plants from 1 mM to 100 μ M NH₄NO₃ solutions resulted in rapid increases of *AtAMT1* mRNA expression levels (Figure 2a,b), which by 24 h had increased 7.5-fold relative to those at time 0. High-affinity ¹³NH₄⁺ influx (Figure 2b) also increased continuously, although lagging behind the changes of *AtAMT1* mRNA levels. By 24 h, ¹³NH₄⁺ influx had increased 12-fold from 0.36 μ mol g⁻¹ FW h⁻¹ at the time of transfer to 4.47 μ mol g⁻¹ FW h⁻¹. For

© Blackwell Science Ltd, The Plant Journal, (1999), 19, 143-152

Figure 2. Time-dependent up-regulation of *AtAMT1* mRNA levels and ¹³NH₄⁺ influx (μ mol g⁻¹ FW h⁻¹) in roots of *A. thaliana*, following the transfer of 3-week-old plants from 1 mM NH₄NO₃ to 0.1 mM NH₄NO₃. (a) Northern blot analysis of root RNA, probed with the *AtAMT1* cDNA.

Internal standard was shown in Figure 1. (b) AtAMT1 expression levels (\bigcirc) and ${}^{13}NH_4^+$ influx (\bigcirc), expressed as

(b) AtAMIT expression levels (\bigcirc) and $^{-1}M_4^{-1}$ influx (Ψ), expressed as percentages of their maximum values.

purposes of comparison, Figure 2(b) shows the changes of *AtAMT1* mRNA levels and $^{13}NH_4^+$ influx during the 24 h treatment as percentages of their values at 24 h.

Down-regulation of ¹³NH₄⁺ influx was examined by transferring plants, previously acclimated in 1 mM NH₄NO₃, to N-free media for 2 days to minimize internal N reserves and increase NH₄⁺ influx. These plants were then exposed to 5 mM NH₄NO₃ for intervals of up to 24 h. Northern analysis of root AtAMT1 transcript abundance following resupply of N revealed a rapid decline during the first 6h of down-regulation (Figure 3a,b). High-affinity ${}^{13}NH_4^+$ influx, measured at 100 μ M NH₄NO₃, also declined rapidly during this time (Figure 3b). Thus, by 12 h, ${}^{13}NH_4^+$ influx had decreased by 93% from 4.82 to 0.34 µmol g⁻¹ FW h⁻¹. Expressing AtAMT1 transcript abundance and NH4⁺ influx as percentages of their maximum values (Figure 3b) reveals that NH4+ influx declined more rapidly than the decline of root AtAMT1 transcript abundance. This pattern was consistently observed during down-regulation.

Figure 3. Time-dependent down-regulation of *AtAMT1* mRNA levels and $^{13}NH_4^+$ influx in roots of *A. thaliana*, following re-supply of NH₄NO₃. Plants were supplied with 1 mM NH₄NO₃ for 19 days, then deprived of N

for 2 days, prior to transfer to $5 \text{ mM NH}_4\text{NO}_3$. (a) Northern blot analysis of root RNA, probed with the *AtAMT1* cDNA. Internal standard was as in Figure 1.

(b) AtAMT1 mRNA levels (\bigcirc) and ${}^{13}NH_4^+$ influx (\bigcirc) during down-regulation, expressed as percentages of their maximum values.

Changes of cellular N pools during down-regulation of AtAMT1 transcript levels and NH_4^+ influx

In order to identify the N pools (NH₄⁺ or assimilation products) responsible for the observed changes of NH4+ influx and AtAMT1 expression during down-regulation, we measured root and shoot concentrations of $\mathsf{NH_4^+}$ and individual amino acids, patterns of ¹³NH₄⁺ influx, and AtAMT1 expression levels, in the presence and absence of 1 mM methionine sulfoximine (MSX) following re-supply of 5 mM NH₄NO₃. The inhibitor MSX blocks the action of the enzyme glutamine synthetase (GS) resulting in elevated [NH4⁺] and reduced [GIn] (King et al., 1993; Lee et al., 1992). As shown in Figure 3(a,b), the AtAMT1 transcript level was reduced to about 20% of its initial (time 0) level, 9h after the transfer to 5mM NH₄NO₃. Therefore, to minimize the duration of exposures to MSX in subsequent experiments, 9h treatments were employed as the standard for experiments using MSX.

Figure 4. Root NH_4^+ , glutamine and total amino acid concentrations of *A. thaliana* plants (µmol g⁻¹ FW), at 0 and 9 h after resupply of 5 mM NH_4NO_3 to N-limited plants, in the presence and absence of 1 mM MSX.

The most prominent change in root N pools during down-regulation was that of Gln (Figure 4), which increased ninefold, from $2.58 \mu mol g^{-1}$ FW at time 0 to 23.2 μ mol g⁻¹ FW at 24 h. No other amino acid showed such a substantial change in concentration, while root $[NH_4^+]$ increased 3.8-fold. Table 2 provides r^2 values for the regressions of AtAMT1 transcript levels (expressing transcript level at time 0 as 100%), against root or shoot amino acid concentrations during the 24h following resupply of NH₄NO₃. Only Gln, aspartate and the sum of all amino acids gave statistically significant r^2 values (0.92, 0.85 and 0.86, respectively). Figure 5 reveals the strong negative correlations between AtAMT1 levels and root [Gln], and $^{13}NH_4^+$ influx and root [GIn], throughout the 24 h of exposure to 5 mM NH₄NO₃. In leaf tissue, like roots, the largest absolute and relative change was in Gln concentrations.

When MSX was provided together with 5 mM NH₄NO₃, the *AtAMT1* transcript level at 9h remained at 88% of its original value (Figure 6a,b). During this time, root $[NH_4^+]$ increased 27-fold from 0.35µmol g⁻¹ FW at time 0 to 9.7µmol g⁻¹ FW at 9h (Figure 4), while root GIn concentration remained relatively unchanged (declining from 2.58 to 2.41µmol g⁻¹ FW). When plants were treated for 9h with 1 mM MSX, together with 5 mM NH₄NO₃ and 5 mM GIn, *AtAMT1* transcript expression was reduced by 76% (Figure 6a), confirming the capacity of GIn to

© Blackwell Science Ltd, The Plant Journal, (1999), 19, 143-152

	r ² †		Changes in [A.A.] ‡	
Amino acid	Root	Shoot	Root	Shoot
Ammonium	0.50	0.46	0.98 (3.8)	0.80 (3.6)
Alanine	0.03	0.72*	0.63 (1.4)	0.82 (2.7)
Arginine	0.23	0.49	0.15 (1.9)	0.97 (5.7)
Aspartate	0.84**	0.54	0.57 (6.5)	0.47 (3.2)
Asparagine	0.60	0.39	0.54 (2.1)	1.83 (2.9)
Gaba	0.01	0.52	nc	0.63 (1.9)
Glutamate	0.04	0.28	nc	0.54 (3.0)
Glutamine	0.92**	0.79*	20.6 (9.0)	14.3 (6.5)
Glycine	0.58	0.22	0.18 (1.7)	nc
Histidine	0.24	0.53	nc	0.05 (4.6)
Isoleucine	0.36	0.35	0.05 (0.5)	0.02 (1.9)
Leucine	0.23	0.35	nc	0.07 (4.4)
Lysine	0.18	0.54	nc	0.09 (3.8)
Methionine	0.01	0.06	nc	nc
Phenylalanine	0.01	0.37	nc	0.03 (2.0)
Proline	0.40	0.8*	-0.98 (0.6)	1.00 (1.9)
Serine	0.13	0.52	nc	0.55 (1.8)
Threonine	0.08	0.78*	nc	0.28 (3.1)
Tyrosine	0.07	0.16	nc	nc
Valine	0.07	0.35	nc	0.08 (2.2)
Total A.A.	0.86**	0.74*	21.8 (2.8)	21.7 (3.8)
Total A.A. – GIn	0.24	0.59	nc	7.41 (2.4)

Table 2. Coefficients of determination (r^2) for the relationships between *AtAMT1* transcript levels and tissue amino acid concentrations ([A.A.]), and changes in tissue [A.A.] (µmol g⁻¹ FW) 24 h after supplying 5 mM NH₄NO₃

In parentheses: $[A.A.]_{t=24 h}/[A.A.]_{t=0 h}$ ratio.

†Regressions were based upon measurements at six time intervals (four replicates each) within a 24 h period.‡Changes in [A.A.] are shown only for the longest interval (0–24 h).

P*<0.05, *P*<0.01, nc: no change.

circumvent the MSX blockage of NH₄NO₃ assimilation. Glutamine, either alone or together with 5 mM NH₄NO₃, also strongly reduced *AtAMT1* mRNA expression levels (Figure 6a). Corresponding measurements of NH₄⁺ influx (Figure 6b) revealed that the presence of MSX, together with NH₄NO₃, had reduced influx by <10% by 3 h, compared to 90% in the absence of MSX. By 9 h, however, influx was reduced by approximately 35%. When Ndeprived plants (control treatment) were supplied with 5 mM Gln in place of 5 mM NH₄NO₃, ¹³NH₄⁺ influx was reduced from 8.67 ± 1.42 µmol g⁻¹ FW h⁻¹ (control) to 1.33 ± 0.23 µmol g⁻¹ FW h⁻¹ by 9 h.

The low-affinity NH_4^+ transport system (LATS): NH_4^+ influx is independent of N supply

As shown in Figure 7, at NH_4^+ concentrations from 1 to 10 mM, a low-affinity (LATS) transport system was evident. In plants grown in 100 μ M NH_4NO_3 , this transport system showed no indication of saturation and, in contrast to the down-regulation of high-affinity NH_4^+ influx, low-affinity influx was not reduced by growth at 1 mM or 10 mM NH_4NO_3 . Since measured ¹³ NH_4^+ fluxes at high external

NH₄⁺ concentration are the resultant of the two transport systems (HATS plus LATS), the V_{max} values for ¹³NH₄⁺ were subtracted from measured ¹³NH₄⁺ influxes to generate the LATS contribution to measured ¹³NH₄⁺ fluxes. Figure 7 shows the subtracted values for LATS fluxes in plants grown at 100 μM, 1 mM and 10 mM when ¹³NH₄⁺ fluxes were measured at 1–10 mM external [NH₄⁺]. The regression lines for ¹³NH₄⁺ influx against external [NH₄⁺] were so similar that a single regression line provided a good fit of the data (r^2 = 0.94) at all values except perhaps at 10 mM external [NH₄⁺].

Discussion

Regulation of NH₄⁺ influx in response to N supply

The results of the present compartmental analyses confirm that roots of *Arabidopsis* plants behave essentially like those of rice and white spruce, with respect to half-lives of $^{13}NH_4^+$ exchange and accumulation of NH_4^+ in cytoplasmic and cell wall compartments (Kronzucker *et al.*, 1995; Wang *et al.*, 1993a). We therefore settled on influx and desorption times of 10 and 3 min, respectively, to estimate plasma

Figure 5. AtAMT1 expression levels (main figure) expressed as a percentage of maximum expression levels at time 0, and $^{13}NH_4^+$ influx inµmol g⁻¹ FW h⁻¹ (inset) during a 24 h period of down-regulation (data from Figure 3) as functions of root glutamine concentrations inµmol g⁻¹ FW (from Figure 4).

Regression lines for AtAMT1 expression levels and $^{13}NH_4^+$ influx are given by a linear regression (r^2 =0.92), and a polynomial regression Y = 5.55-0.46 X + 0.01 X² (r^2 =0.89), respectively.

membrane NH_4^+ influx. Varying the ambient N supply to *A. thaliana* plants prior to influx determinations resulted in a strong down-regulation of the high-affinity NH_4^+ transport system (HATS). This is consistent with several earlier studies using several crop species (Becking, 1956; Causin and Barneix, 1993; Morgan and Jackson, 1988; Wang *et al.*, 1993a; Wang *et al.*, 1993b). The results of these studies established that NH_4^+ uptake was negatively correlated with prior N supply but failed to provide consensus regarding the underlying mechanism(s) of this feedback, particularly which N pool, NH_4^+ or products of its assimilation were responsible for the feedback.

High V_{max} values and a saturable concentration response for ¹³NH₄⁺ influx in roots of *A* thaliana validate the designation of this transport system as a high-affinity (HATS) NH₄⁺ transport system. Furthermore, while V_{max} values responded to the NH₄NO₃ supply under steadystate conditions, as shown in previous reports (Kronzucker *et al.*, 1995; Wang *et al.*, 1993b), K_m values were not correlated with N supply. Absolute values for K_m varied from 85 to 168 µM, but failed to correlate with N supply as was reported by Wang *et al.* (1993a) for rice. Literature reports for K_m values vary considerably (see Glass and Siddiqi, 1995), ranging from approximately 20–167 µM.

Figure 6. Effects of NH₄NO₃, MSX and GIn on AtAMT1 mRNA levels and ¹³NH₄⁺ influx in roots of A. thaliana.

(a) Down-regulation of AtAMT1 mRNA levels by 5 mm $\rm NH_4NO_3$ (left panel) and effects of MSX and GIn (right panel). Internal standard as shown in Figure 1.

(b) AtAM71 mRNA levels (○) and ¹³NH₄⁺ influx (●) in the presence and absence of MSX, expressed as percentages of their maximum values.

Lycklama (1963) reported values from 40 to $200 \,\mu M$ according to plant age, using $^{14}NH_4^+$ depletion to determine K_m values for net NH_4^+ uptake by roots of ryegrass.

AtAMT1 gene expression and N supply

The high levels of *AtAMT1* gene expression in roots of low-N plants, which showed high HATS activity, provide correlative evidence that this gene encodes a HATS for NH₄⁺ influx in *A. thaliana*. Likewise, the demonstrated changes of V_{max} for ¹³NH₄⁺ influx, and the short-term changes of influx resulting from manipulating the N supply, were correlated with changes of *AtAMT1* gene expression. These results provide evidence that this feedback loop operates, at a minimum, through effects at the level of *AtAMT1* mRNA. However, while changes of ¹³NH₄⁺ influx during up-regulation (Figure 2), ¹³NH₄⁺ influx was reduced more rapidly than *AtAMT1* transcript levels during down-regulation (Figures 3 and 6). We interpret this

© Blackwell Science Ltd, The Plant Journal, (1999), 19, 143-152

Figure 7. 13 NH₄⁺ influx (µmol g⁻¹ FW h⁻¹) due to the LATS activity (calculated by subtracting the HATS fluxes from measured fluxes) at 1-10 mM external [NH₄⁺].

anomaly as the result of direct inhibitory effects of cytosolic NH_4^+ on membrane transport activity (as discussed below).

Regulation of AtAMT1 gene expression depends upon tissue Gln concentrations

The results of the short-term experiments in which N supply was withheld or resupplied provide the context in which to identify which cellular N pool(s) are responsible for regulating AtAMT1 gene expression. The outcome of the experiments using MSX, with or without added GIn, generate a convincing argument that tissue NH₄⁺ is not responsible for the observed effects on AtAMT1 gene expression. Rather, the correlations between AtAMT1 gene expression and root [GIn], and between ¹³NH₄⁺ influx and root [GIn] (Figure 5 and Table 2), provide strong evidence that Gln is the controlling agent. Although aspartate and total amino acid concentrations were significantly correlated with AtAMT1 gene expression (Table 2), root aspartate concentrations were typically <4% of Gln concentrations at all time points and, therefore, represented only a minor component of the increased tissue N associated with N resupply. The data from Figure 4 and Table 2 establish that the major part of absorbed NH_4^+ was accounted for by conversion to GIn within the roots. Moreover, the high r^2 for the sum of all amino acids (Table 2) was reduced from 0.86 to 0.24 when Gln was removed from the regression. Thus the evidence points to root Gln concentrations as responsible for the downregulation of *AtAMT1* transcript levels. These conclusions are consistent with earlier physiological studies using wheat, barley and squash which demonstrated that exogenous application of Gln reduced NH_4^+ uptake (Causin and Barneix, 1993; Lee *et al.*, 1992; Wieneke and Roeb, 1998).

Although our analyses of root and shoot Gln concentrations were average tissue concentrations, it has been demonstrated in earlier studies (Winter *et al.*, 1992) that cellular amino acids are mainly localized within the cytosol. The rapidity of the observed changes of ¹³NH⁺ influx and *AtAMT1* gene expression, resulting from perturbation of the N supply, argue for control via cytoplasmic N pools. While we have no data on rates of amino acid turnover in the cytoplasm, the present compartmental analyses indicate that the t_{0.5} for cytoplasmic NH₄⁺ exchange is about 12 min. Thus, changes of gene expression and NH₄⁺ transport might be evident within hours of perturbing the N supply.

Effects of cellular NH₄⁺ on the NH₄⁺ transporter

The application of MSX plus 5 mM NH₄NO₃ caused virtually no down-regulation of AtAMT1 gene expression, which remained at 88% of the control (0 time) value after 9h (Figure 6). By contrast, $^{13}NH_4^+$ influx was consistently reduced by 30-40% under the same conditions (Figure 6). Given that the [NH₄⁺] of MSX-treated roots had increased 27-fold by 9h (Figure 4), and that Gln levels were essentially unchanged, increased efflux of NH4⁺ during influx measurement might have reduced the specific activities of ¹³NH₄⁺ in the influx media, resulting in an artificial lowering of the calculated influx values. By measuring the $[NH_4^+]$ of influx media after the 10 min influx period, we demonstrated that there were no changes to the ¹³NH₄⁺ specific activity. Thus, the reduced values for ¹³NH₄⁺ influx associated with high cytosolic $[NH_4^+]$ in the presence of MSX are real and may result from inhibitory effects of cytosolic NH_4^+ on the activity of the HATS protein. Previous experiments have demonstrated that NH4⁺ is able to inhibit plasma membrane influx and efflux of NO3⁻ within minutes of its application (Aslam et al., 1996; Glass and Siddigi, 1995; Lee and Drew, 1989).

Differential response of the HATS and LATS to N status

Ammonium transport in *A. thaliana* showed biphasic uptake kinetics as previously reported for roots of *Lemna*, rice and white spruce (Kronzucker *et al.*, 1996; Ullrich *et al.*, 1984; Wang *et al.*, 1993b). At low external $[NH_4^+]$, the saturable high-affinity transporter is capable of active NH_4^+

absorption, while at higher concentrations (> 1 mM NH_{4}^{+}) transport is passive (Ullrich et al., 1984; Wang et al., 1993b). In contrast to the observed down-regulation of HATS activity and AtAMT1 transcript levels, expression of the low-affinity transport system in roots of A. thaliana failed to demonstrate down-regulation when plants were grown at 1 mM and 10 mM external [NH₄⁺] (Figure 7). This phenomenon whereby internal ion concentrations regulate the activity of high-affinity transporters but not the corresponding low-affinity systems, was first observed for K⁺(⁸⁶Rb⁺) influx in barley and ryegrass (Glass and Dunlop, 1978) and subsequently in corn (Kochian and Lucas, 1982). It was also evident in studies of NH₄⁺ influx in rice (Wang etal., 1993b). It is perplexing that only the high-affinity systems should be regulated in this way. However, the apparent absence of LATS regulation may account for the toxic effects associated with elevated NH4⁺ provision in many species (Bloom, 1988; Gill and Reisenauer, 1993; Magalhaes and Wilcox, 1991). It might be argued that the elevated concentrations employed to measure low-affinity transport systems are representative only of agricultural soils where high levels of fertilizer are applied. Hence, the conditions required to measure the operation of the lowaffinity transporters could be considered somewhat unnatural. Nevertheless, the existence of biphasic (high- and low-affinity) transporters for a wide range of inorganic and organic nutrients appears to be universal, suggesting functional operation outside the agricultural context.

In summary, both high- and low-affinity NH_4^+ transporters are expressed in roots of *A. thaliana*. Expression levels of the *AtAMT1* gene were strongly correlated with highaffinity NH_4^+ influx, providing further evidence for the physiological function of this gene in high-affinity NH_4^+ transport. Transcript levels of the *AtAMT1* gene appear to be regulated by root Gln concentrations, but not by NH_4^+ . Since Gln is the first product of NH_4^+ assimilation in roots (and in shoots), this compound probably serves as the primary signal of cellular N-status. Nevertheless, high levels of cytoplasmic NH_4^+ act upon the transport protein, either through direct (e.g. allosteric effects) or via posttranslational events. A model summarizing the findings of the present study is shown in Figure 8.

Experimental procedures

Growth of plants

A. thaliana (L.) plants (ecotype Columbia) were grown in a controlled environment chamber at 20 \pm 2°C, in 16h light/8h dark cycles, 70% RH and 250 µmol photons m⁻²s⁻¹ at plant level (Vitalite fluorescent tubes, Durotest, North Bergen, NJ, USA). Twenty seeds were germinated in 5 ml of sterile culture solution: 29 mM sucrose, 2.6 mM MES, 2 mM KH₂PO₄, 1 mM MgSO₄, 1 mM NH₄NO₃, 1 mM CaCl₂, 20 µM NaFeEDTA, 25 µM H₃BO₃, 12 µM MnSO₄, 1 µM ZnCl₂, 1 µM CuCl₂, and 0.2 µM Na₂MoO₄ at pH5.7. The choice of NH₄NO₃ as the N source for plant growth was based upon the relatively poor growth of *A. thaliana* on NH₄Cl or (NH₄)₂SO₄ (S,R. Rawat *et al.*, unpublished observations).

After 3 days, seedlings were transferred to sterile culture vessels (Magenta Corporation, Chicago, IL, USA), containing 60 ml of fresh culture solution and were gently agitated on a gyrotory shaker. Nutrient solutions were replaced frequently to maintain steady state with respect to plant N status. In order to generate low-, intermediate-and high-N plants, respectively, 2-week-old plants were transferred from media containing 1 mm NH₄NO₃ to fresh media containing 100 μ M NH₄NO₃, 1 mm NH₄NO₃, or 10 mm NH₄NO₃ which were replaced regularly. In short-term perturbation experiments, low-N plants were transferred to solutions containing 100 μ M NH₄NO₃, and high-N plants were transferred to solutions containing 100 μ M NH₄NO₃. During

Figure 8. A model describing the regulation of high-affinity NH_4^+ transport, at the level of *AtAMT1* transcription and at the level of the NH_4^+ transporter.

AtAMT1 gene transcript level is controlled through effects of cellular Gln (solid lines), while NH_4^+ may act upon the pAtAMT1 transport protein (dotted lines) through direct (e.g. allosteric or post-translational) effects.

experiments lasting up to 24 h, NH_4^+ influx values, tissue N levels and *AtAMT1* expression levels were determined.

Efflux analysis

In order to develop an appropriate protocol for influx measurements, efflux analyses were undertaken using 21-day-old plants maintained at 100 µm or 1 mm NH4NO3. Efflux analysis was undertaken according to previously published methods (Kronzucker et al., 1995). Roots were equilibrated for 5 min in fresh media and then exposed to ¹³NH₄+-labeled culture medium containing $100\,\mu\text{M}$ or $1\,\text{mM}$ NH_4NO_3 for $45\,\text{min}~^{13}N$ eluting from the superficial solution, the cell wall and the cytoplasmic compartments was counted in a Packard gamma-counter (Minaxi γ , Auto-gamma 5000 series, Downer's Grove, IL, USA), and the half-lives for ¹³NH₄⁺ exchange of the above compartments, NH₄⁺ flux values between compartments, and cytoplasmic [NH₄⁺] were estimated (see Kronzucker et al., 1995; Lee and Clarkson, 1986). To ensure that the label effluxing from roots consisted of ¹³NH₄⁺ rather than products of ¹³NH₄⁺ assimilation, the difference between counts before and after alkalization and boiling was determined. Typically, about 98% of ¹³N contained in the original eluates were volatilized by 6 min of boiling.

¹³NH₄⁺ influx determinations

¹³NH₄⁺ influx was determined from efflux analysis (see above) and by direct measurement of the accumulation of ¹³N from nutrient solutions during a 10 min influx period followed by 3 min desorption in identical non-labeled solution to remove tracer from the cell wall. These times were based upon the calculated halflives for tracer exchange of the cell wall (0.56–0.66 min) and cytoplasmic compartments (10.7–12.6 min) as a compromise which optimized removal of tracer from the cell wall while minimizing loss of tracer from the cytoplasm. Total ¹³N accumulated in roots and shoots was determined by gamma-counting.

Time-dependent analysis of $^{13}NH_4^+$ influx, AtAMT1 mRNA levels and root [NH₄⁺] and [GIn]

For up-regulation, plants previously acclimated in 1 mM NH₄NO₃ for 21 days were transferred to 100 μM NH₄NO₃. AtAMT1 mRNA levels and ¹³NH₄⁺ influx (from 100 µM NH₄NO₃) were subsequently measured at intervals up to 24 h. To investigate the pattern of down-regulation, plants were acclimated in 1 mM NH₄NO₃ for 19 days and then transferred to solutions without N for 2 days to reduce tissue N and generate plants with high initial rates of NH4+ influx. These were then transferred to 5 mM NH₄NO₃, and AtAMT1 mRNA levels and $^{13}\text{NH}_4\text{+}influx$ (from 100 μM NH_4NO_3) were measured for up to 24 h. All transfers were staggered so that AtAMT1 mRNA levels and ¹³NH₄⁺ fluxes were determined at the same time so as to eliminate diurnal effects. This was also essential because of the short half-life (9.98 min) of the ¹³N tracer. To investigate the down-regulation of NH4⁺ influx, 1 mM methionine sulfoximine (MSX), an inhibitor of the enzyme glutamine synthetase, was used to block the conversion of NH4⁺ to Gln. This treatment increased tissue $[NH_4^+]$ and reduced GIn and amino acid levels (King et al., 1993; Lee et al., 1992). In separate experiments, MSX with or without 5 mM Gln, was added to the pre-treatment solutions containing 5 mM NH₄NO₃. AtAMT1 expression and ¹³NH₄⁺ influx were then measured at intervals up to 9 h. All flux data presented are the means of at least three,

Regulation of NH_4^+ transport 151

typically four replicates. All experiments were repeated at least three times. Analysis of root $[NH_4^+]$ and individual [amino acid] were analyzed by HPLC. Plant tissues from 30 plants were ground to powder in liquid nitrogen and extracted in cold 10 mM sodium acetate buffer (pH 6.5). The extracts were centrifuged at 16000 *g*, filtered through a 0.45 μ m, filter and then derivatized using the AccQ.Fluor reagent (Waters Chromatography, Milford, MA, USA). Separations were carried out using a 3.9 \times 150 mm AccQ.Tag Column (Waters Chromatography, Milford, MA, USA), according to published methods (Van Wandelen and Cohen, 1997) on a Waters 600 LC system and detected with a Waters 474 scanning fluorescence detector (Waters Chromatography, Milford, MA, USA).

RNA extraction and Northern blot analysis

For expression studies, each treatment unit consisted of a single culture vessel containing 30 Arabidopsis seedlings. Each treatment was replicated and all experiments were repeated. Total RNAs were isolated from root and shoot tissues using TRIzol Reagent (GIBCO BRL) according to the manufacturer's instructions. Total RNA (15µg) were fractionated on a 1.2% MOPSformaldehyde agarose gel and transferred to nylon membrane (Amersham, Oakville, Canada). Northern hybridizations were carried out according to standard protocols (Sambrook et al., 1989). A 1.75 kb Not1 fragment of pAtAMT1 representing a fulllength cDNA was purified, ³²P-labeled using random priming, and used as a probe. Final washes of Northern blots were done once at 65°C in 0.1× SSPE and 0.1% SDS and subjected to autoradiography using X-OMAT film at -70°C overnight. All EtBr stained gels (for loading corrections) and autoradiographs were normalized by reprobing the same Northern blots with an At25S rDNA probe, and analyzed by densitometric scanning using the Molecular Analyst computer software program (Bio-Rad, Hercules, CA, USA).

Acknowledgements

We thank Wolf. B. Frommer (Institut für Genbiologische Forchung, Germany) for providing the *AtAMT1* cDNA and the ABRC DNA stock centre (The Ohio State University, OH, USA) for *AtrDNA* clone. This work was supported by the Natural Sciences and Engineering Research Council of Canada (Grant STR0167384) to A.D.M.G.

References

- Arcondeguy, T., Huez, I., Tillard, P., Gangneux, C., de Billy, F., Gojon, A., Truchet, G. and Kahn, D. (1997) The *Rhizobium meliloti* P-II protein, which controls bacterial nitrogen metabolism, affects alfalfa nodule development. *Genes Dev.* 11, 1194–1206.
- Aslam, M., Travis, R.L., Rains, D.W. and Huffaker, R.C. (1996) Effect of ammonium on the regulation of nitrate and nitrite transport systems in roots of intact barley (*Hordeum vulgare* L.) seedlings. *Planta*, 200, 58–63.
- Becking, J.H. (1956) On the mechanism of ammonium uptake by maize roots. Acta. Bot. Neerl. 5, 2–79.
- Bloom, A.J. (1988) Ammonium and nitrate as nitrogen sources for plant growth. ISI Atlas. Animal Plant Sci. 1, 55–59.
- Causin, H.F. and Barneix, A.J. (1993) Regulation of ammonium uptake in wheat plants: effect of root ammonium concentration and amino acids. *Plant Soil*, **151**, 211–218.

152 Suman R. Rawat et al.

- Cooper, H.D. and Clarkson, D.T. (1989) Cycling of amino-nitrogen and other nutrients between shoots and roots in cereals: a possible mechanism integrating shoot and root in regulating nutrient uptake. J. Exp. Bot. 40, 753–762.
- Crawford, N.M. and Glass, A.D.M. (1998) Molecular and physiological aspects of nitrate uptake in plants. *Trends Plant Sci.* 3, 389–395.
- Dubois, E. and Grenson, M. (1979) Methylamine/ammonia uptake systems in Saccharomyces cerevisiae: multiplicity and regulation. Molec. Gen. Genet. 175, 67–76.
- Gill, M.A. and Reisenauer, H.M. (1993) Nature and characterization of ammonium effects on wheat and tomato. *Agron. J.* 85, 874– 879.
- **Glass, A.D.M. and Dunlop, J.** (1978) The influence of potassium content on the kinetics of potassium influx into excised ryegrass and barley roots. *Planta*, **141**, 117–119.
- Glass, A.D.M. and Siddiqi, M.Y. (1995) Nitrogen absorption by plant roots. In *Nitrogen Nutrition in Higher Plants* (Srivastava, H.S. and Singh, R.P., eds). New Delhi Associated Publishing Co., pp. 21–56.
- Hsieh, M.-H., Lam, H.-M., van de Loo, F.J. and Coruzzi, G. (1998) A PII-like protein in *Arabidopsis*: Putative role in nitrogen sensing. *Proc. Natl Acad. Sci. USA*, **95**, 13965–13930.
- Imsande, J. and Touraine, B. (1994) N demand and the regulation of nitrate uptake. *Plant Physiol.* **105**, 3–7.
- Kaiser, B.N., Finnegan, P.M., Tyerman, S.D., Whitehead, L.F., Bergersen, F.J., Day, D.A. and Udvardi, M.K. (1998) Characterization of an ammonium transport protein from the peribacteroid membrane of soybean nodules. *Science*, 281, 1202–1206.
- Kielland, K. (1994) Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. *Ecology*, 75, 2373–2383.
- King, B.J., Siddiqi, M.Y., Ruth, T.J., Warner, R.L. and Glass, A.D.M. (1993) Feedback regulation of nitrate influx in barley roots by nitrate, nitrate and ammonium. *Plant Physiol.* 102, 1279–1286.
- Kochian, L.V. and Lucas, W.J. (1982) Potassium transport in corn roots. 1. Resolution of kinetics into a saturable and linear component. *Plant Physiol.* **70**, 1723–1731.
- Kronzucker, H.J., Siddiqi, M.Y. and Glass, A.D.M. (1995). Compartmentation and flux characteristics of ammonium in spruce. *Planta*, **196**, 691–698.
- Kronzucker, H.J., Siddiqi, M.Y. and Glass, A.D.M. (1996). Kinetics of NH₄⁺ influx in spruce. *Plant Physiol.* **110**, 773–779.
- Lauter, F.R., Ninnemann, O., Bucher, M., Riesmeier, J.W. and Frommer, W.B. (1996) Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. *Proc. Natl Acad. Sci. USA*, 93, 8139–8144.
- Lee, R.B. and Clarkson, D.T. (1986) Nitrogen-13 studies of nitrate fluxes in barley roots. I. Compartmental analysis from measurements of ¹³N efflux. J. Exp. Bot. **37**, 1753–1767.
- Lee, R.B. and Drew, M.C. (1989) Rapid, reversible inhibition of nitrate influx in barley by ammonium. J. Exp. Bot. 40, 741–752.
- Lee, R.B., Purves, J.V., Ratcliffe, R.G. and Saker, L.R. (1992) Nitrogen assimilation and the control of ammonium and nitrate absorption by maize roots. J. Exp. Bot. 43, 1385–1396.
- Lee, R.B. and Rudge, K.A. (1986) Effects of nitrogen deficiency on

the absorption of nitrate and ammonium by barley plants. *Ann. Bot.* **57**, 471–486.

- Lycklama, J.C. (1963) The absorption of ammonium and nitrate by perennial ryegrass. Acta Bot. Neerl. 12, 361–423.
- Magalhaes, J.R. and Wilcox, G.E. (1991) Ammonium toxicity development in tomato plants relative to nitrogen form and light intensity. J. Plant Nutr. 7, 1477–1496.
- Magasanik, B. (1988) Reversible phosphorylation of an enhancer binding protein regulates the transcription of bacterial nitrogen utilization genes. *Trends Biochem. Sci.* **13**, 475–479.
- Marini, A.-M., Soussi-Boudekou, S., Vissers, S. and Andre, B. (1997). A family of ammonium transporters in *Saccharomyces cerevisiae*. *Mol. Cell. Biol.* 17, 4282–4293.
- Marini, A.-M., Vissers, S., Urrestarazu, A. and Andre, B. (1994) Cloning and expression of the *MEP1* gene encoding an ammonium transporter in *Saccharomyces cerevisiae*. *EMBO J.* 13, 3456–3463.
- Morgan, M.A. and Jackson, W.A. (1988) Inward and outward movement of ammonium in root systems: transient responses during recovery from nitrogen deprivation in presence of ammonium. J. Exp. Bot. 39, 191.
- Ninnemann, O., Jauniaux, J.-C. and Frommer, W.B. (1994) Identification of a high-affinity NH_4^+ transporter from plants. *EMBO J.* **13**, 3464–3471.
- Presland, M.R. and McNaughton, G.S. (1986) Whole plant studies using radioactive 13-nitrogen. IV. A compartmental model for the uptake and transport of ammonium ions by *Zea mays. J. Exp. Bot.* **37**, 1619–1632.
- Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) *Molecular Cloning: A Laboratory Manual.* Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
- Stark, J.M. and Hart, S.C. (1997) High rates of nitrification and nitrate turnover in undisturbed coniferous forests. *Nature*, 385, 61–64.
- Trueman, L.J., Richardson, A. and Forde, B.G. (1996) Molecular cloning of higher plant homologues of the high-affinity nitrate transporters of *Chlamydomonas reinhardtii* and *Aspergillus nidulans. Gene*, **175**, 223–231.
- Ullrich, W.R., Larsson, M., Larsson, C.-M., Lesch, S. and Novacky, A. (1984) Ammonium uptake in *Lemna gibba* G1, related membrane potential change and inhibition of anion uptake. *Physiol. Plant.* 61, 369–376.
- Van Wandelen, C. and Cohen, S.A. (1997) Using quaternary high-performance liquid chromatography eluent systems for separating 6-aminoquinolyl-N-hydroxysuccinimidyl carbamatederivatized amino acid mixture. J. Chromatogr. 763, 11–22.
- Wang, M., Siddiqi, M.Y., Ruth, T.J. and Glass, A.D.M. (1993a) Ammonium uptake by rice roots. I. Fluxes and subcellular distribution of ¹³NH₄⁺. *Plant Physiol.* **103**, 1249–1258.
- Wang, M., Siddiqi, M.Y., Ruth, T.J. and Glass, A.D.M. (1993b). Ammonium uptake by rice roots. II. Kinetics of ¹³NH₄⁺ influx across the plasmalemma. *Plant Physiol.* **103**, 1259–1267.
- Wieneke, J. and Roeb, G.W. (1998) Effect of methionine sulphoximine on ¹³N-ammonium fluxes in the roots of barley and squash seedlings. Z. Pflanzenernahr. Bodenk. 161, 1–7.
- Winter, H., Lohaus, G. and Heldt, W.H. (1992) Phloem transport of amino acids in relation to their cytosolic levels in barley leaves. *Plant Physiol.* 99, 996–1004.