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Abstract

The disruption of K+ transport and accumulation is

symptomatic of NH4
+ toxicity in plants. In this study, the

influence of K+ supply (0.02–40 mM) and nitrogen

source (10 mM NH4
+ or NO3

–) on root plasma membrane

K+ fluxes and cytosolic K+ pools, plant growth, and

whole-plant K+ distribution in the NH4
+-tolerant plant

species rice (Oryza sativa L.) was examined. Using the

radiotracer 42K+, tissue mineral analysis, and growth

data, it is shown that rice is affected by NH4
+ toxicity

under high-affinity K+ transport conditions. Substantial

recovery of growth was seen as [K+]ext was increased

from 0.02 mM to 0.1 mM, and, at 1.5 mM, growth was

superior on NH4
+. Growth recovery at these concen-

trations was accompanied by greater influx of K+ into

root cells, translocation of K+ to the shoot, and tissue

K+. Elevating the K+ supply also resulted in a signifi-

cant reduction of NH4
+ influx, as measured by 13N

radiotracing. In the low-affinity K+ transport range,

NH4
+ stimulated K+ influx relative to NO3

– controls. It is

concluded that rice, despite its well-known tolerance

to NH4
+, nevertheless displays considerable growth

suppression and disruption of K+ homeostasis under

this N regime at low [K+]ext, but displays efficient

recovery from NH4
+ inhibition, and indeed a stimulation

of K+ acquisition, when [K+]ext is increased in the

presence of NH4
+.

Key words: Ammonium toxicity, influx, ion transport,

potassium, rice, translocation.

Introduction

Maintenance of potassium (K+) homeostasis is critical to
plant cell function. However, the uptake of K+ and its

distribution within the plant vary widely with environ-
mental conditions. One of the chief factors influencing
plant–potassium relations is the chemical speciation of
inorganic nitrogen (N) in soil. In particular, ammonium
(NH4

+) has been shown to reduce the primary influx of K+

from the external environment, and to suppress its
accumulation in plant tissues (Kirkby and Mengel, 1967;
Scherer et al., 1984; Vale et al., 1987, 1988; Van
Beusichem et al., 1988; Engels and Marschner, 1993;
Peuke and Jeschke, 1993; Wang et al., 1996; Gerendás
et al., 1997; Santa-Marı́a et al., 2000; Bañuelos et al.,
2002; Kronzucker et al., 2003). This is a key feature of
NH4

+ toxicity, which affects the majority of plant species
when exposed to elevated soil concentrations of NH4

+

(typically, when [NH4
+] >1 mM; Britto et al., 2001, 2002;

Britto and Kronzucker, 2002). However, the NH4
+-

dependent inhibition of K+ influx and accumulation can
be alleviated by increasing the external K+ concentration
([K+]ext; Cao et al., 1993; Spalding et al., 1999; Santa-
Marı́a et al., 2000; Kronzucker et al., 2003; Szczerba
et al., 2006a). The sensitivity of K+ influx to NH4

+ appears
to depend on the mechanism of primary K+ uptake that
dominates at a given [K+]ext: at micromolar concentra-
tions, K+ uptake is mainly mediated by an NH4

+-
suppressible, high-affinity transport system (HATS), while
at higher, millimolar [K+]ext, K

+ influx is mediated by an
NH4

+-resistant, low-affinity transport system (LATS)
(Spalding et al., 1999; Santa-Marı́a et al., 2000;
Kronzucker et al., 2003; Szczerba et al., 2006a). The
precise mechanism by which NH4

+ inhibits high-affinity
K+ influx has not been elucidated, although it has been
suggested that NH4

+ competitively inhibits K+ transport at
the protein level (Vale et al., 1987; Wang et al., 1996).
In ammonium-sensitive barley (Hordeum vulgare L.),

NH4
+ has been shown to disrupt not only the primary

influx, but also the internal distribution, of K+, at both
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whole-plant and cellular levels. For example, Santa-Marı́a
et al. (2000) and Kronzucker et al. (2003) found that NH4

+

reduced K+ translocation from root to shoot by 60–90%.
At a subcellular level, radiotracer studies have shown that
cytosolic [K+] is suppressed by high [NH4

+]ext (Kronzucker
et al., 2003; Szczerba et al., 2006a). The disruption of
cytosolic K+ homeostasis and the translocation of K+ to
the shoot are, most probably, related: while NH4

+ is not
transported in large amounts to the shoot (Kronzucker
et al., 1998; Husted et al., 2000), its effect on cytosolic
[K+] or upon K+ translocation pathways in the root may
play a critical role in NH4

+ sensitivity by reducing the
xylem loading of K+ (Gaymard et al., 1998; Johansson
et al., 2006; Liu et al., 2006).
Rice (Oryza sativa L.), the world’s most important crop

species, displays greater tolerance to NH4
+ than other

cereals (Sasakawa and Yamamoto, 1978). Given the
pivotal role of K+ nutrition in the development of NH4

+

toxicity or tolerance, it was therefore important to in-
vestigate the degree to which rice plants may be able to
resist NH4

+-induced disruptions in primary K+ acquisition,
cellular K+ homeostasis, and root-to-shoot K+ transloca-
tion. These disruptions have been characterized in barley
and other NH4

+-sensitive plant species, but have only been
examined in very limited detail in NH4

+-tolerant plant
species (Wang et al., 1996; Bañuelos et al., 2002). Here,
compartmental analyses has been conducted using the
radiotracer 42K+ to evaluate K+ transport and com-
partmentation in intact seedlings of NH4

+-tolerant rice,
examining plant performance at four levels of K+ supply
(0.02–40 mM, spanning the high- and low-affinity trans-
port ranges), with either NH4

+ or nitrate (NO3
–) as the sole

N source (10 mM). It was hypothesized that K+ transport
and distribution, at whole-plant and subcellular levels,
would resist disruption by NH4

+ provision, in ammonium-
tolerant rice.

Materials and methods

Plant culture

Rice seeds (O. sativa L. cv. ‘IR-72’) were surface-sterilized for
10 min in 1% sodium hypochlorite, and germinated in water for 2 d
prior to placement in 4.0 l vessels containing aerated, modified
Johnson’s solution (2 mM MgSO4; 1 mM CaCl2; 0.3 mM
NaH2PO4; 0.1 mM Fe-EDTA; 20 lM H3BO3; 9 lM MnCl2;
1.5 lM CuSO4; 1.5 lM ZnSO4; 0.5 lM Na2MoO4), pH 6–6.5, for
an additional 19 d. The growth solutions were modified to provide
four concentrations of potassium (as K2SO4), at 0.02, 0.1, 1.5, and
40 mM, and nitrogen (10 mM) as either (NH4)2SO4 or Ca(NO3)2.
Solutions were exchanged frequently to ensure that plants remained
at a nutritional steady state, and to ensure that solution pH was
maintained between 6 and 6.5. Solutions were exchanged on the
following days (with the first 2 d spent in water for germination):
8, 12, 15, 17, 19, and 20. Plants were cultured in climate-controlled
walk-in growth chambers under fluorescent lights, providing
a tropical environment for the rice seedlings, with a day/night
temperature cycle of 30 �C/20 �C, an irradiation of 425 lmol

photons m�2 s�1 at plant height for 12 h d�1 (Sylvania Cool White,
F96T12/CW/VHO), and a relative humidity of 70%. On day 19
(2 d prior to experimentation), seedlings were bundled together in
groups of 3–5 at the stem base using a plastic collar, 0.5 cm in
height. For 13N experiments, rice seedlings were transferred to an
experimental radiotracer facility that had similar irradiance and
temperature to those of the growth chamber on day 20 (1 d prior to
experimentation).

Steady-state influx, translocation, and pool size

measurements

Plasma membrane fluxes, cytosolic pool sizes, and shoot trans-
location of K+ were determined under steady-state conditions using
compartmental analysis by tracer efflux (Lee and Clarkson, 1986;
Siddiqi et al., 1991; Kronzucker et al., 1995, 2003; Szczerba et al.,
2006a, b). Briefly, intact roots of seedlings were labelled for 60 min
in a solution identical to the growth solution except that it contained
the radiotracer 42K+ (t1/2¼12.36 h, provided by McMaster Univer-
sity Nuclear Reactor, Hamilton, Ontario, Canada). Labelled seed-
lings were then attached to efflux funnels and eluted of radioactivity
for 30 min, using a timed series [15 s (four times), 20 s (three
times), 30 s (twice), 40 s (once), 50 s (once), 1 min (five times),
1.25 min (once), 1.5 min (once), 1.75 min (once), and 2 min (eight
times); see Fig. 2] of non-radioactive desorption solutions (as 13 ml
or 20 ml aliquots), identical to the growth solutions. All solutions
were mixed using a fine stream of air bubbles. After elution, roots
were detached from shoots and spun in a low-speed centrifuge for
30 s, and fresh weights were determined. Radioactivity from
eluates, roots, and shoots was measured by gamma counting
(Perkin-Elmer Wallac 1480 Wizard 3##, Turku, Finland, or
Canberra-Packard, Quantum Cobra Series II, Model 5003).
Exponentially declining rates of 42K+ release from roots over

time were then analysed using linear regression (see Fig. 2). The
function ln /co(t) *¼ln /co(i)* – kt [in which /co(t) * is tracer efflux
at elution time t, /co(i) * is initial tracer efflux, and k, found from the
slope of the changing tracer release rate, is the rate constant
describing the exponential decline in tracer efflux] was used to
resolve the kinetics of the slowest exchanging phase, which
represents tracer exchange with the cytosolic compartment (Behl
and Jeschke, 1981; Memon et al., 1985; Kronzucker et al., 2003).
Chemical efflux, /co, was determined from /co(i) *, divided by the
specific activity of the cytosol (Sc) at the end of the labelling period
[this activity was determined using the exponential rise function
Sc¼So (1 – e–kt), in which So is the specific activity of the external
solution, t is labelling time, and k is as described above]. Net flux,
/net, was found using total-plant 42K+ retention after desorption.
Influx, /oc, was calculated from the sum of /net and /co.
Translocation of K+ to the shoot was determined from tracer
accumulation at the end of the loading period. Cytosolic [K+]
([K+]cyt) was determined using the flux turnover equation,
[K+]cyt¼X3/oc/k, where X is a proportionality constant correcting
for the cytosolic volume being ;5% of total tissue (Lee and
Clarkson, 1986; Siddiqi et al., 1991). For 13N experiments,
compartmental analysis proceeded as described above, with the
exception that seedlings were labelled for between 30 min and
60 min in a solution identical to the growth solution but containing
the radiotracer 13N (t1/2¼9.97 min; as 13NH4

+) provided by the
CAMH cyclotron facility (University of Toronto, Ontario, Canada).

Short-term non-steady-state influx measurements

To examine the effect of changing [K+]ext on K+ influx, unidirec-
tional influx of K+ under non-steady-state conditions was de-
termined directly using short-term labelling with 42K+ (see Britto
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and Kronzucker, 2001). Seedlings grown at 0.1 mM [K+]ext were
pre-equilibrated for 5 min in growth solution, then immersed in
labelling solution for another 5 min. This solution was identical to
the growth solution, except that it contained 42K+ for a final [K+]ext
between 0.1 mM and 5 mM. Plants were then transferred to a non-
radioactive solution for 5 s to reduce tracer carryover to the
desorption solution, and finally desorbed for 5 min in fresh nutrient
solution. Influx of NH4

+ was also determined directly, as described
for 42K+, but using short-term labelling (5 min) with 13N. Seedlings
were placed for 5 min in growth solution for equilibration, followed
by immersion in labelling solution identical to the growth solution,
but containing 13NH4

+, for 5 min. Plants were then transferred to
a non-radioactive solution for 5 s, and finally desorbed for 5 min in
fresh nutrient solution, as described for 42K+.

Tissue K+ content

To measure tissue K+ content, roots of rice seedlings were first
desorbed for 5 min in 10 mM CaSO4 to remove extracellular K+.
Roots and shoots were then separated and weighed. Tissue was
oven dried for a minimum of 72 h at 80–85 �C, reweighed,
pulverized, and digested with 30% HNO3 for a minimum of 72 h.
K+ concentrations in tissue digests were determined using a single-
channel flame photometer (Digital Flame Analyzer model 2655-00,
Cole-Parmer, Anjou, Quebec, Canada).

Statistical analysis

Statistical analyses were conducted using either a paired-sample
t-test or one-way analysis of variance (ANOVA), followed by post
hoc multiple comparisons meeting the assumptions of the Dunnett’s
C exam (not assuming equal variances), with the statistical package
SPSS (ver. 12).

Results

At the lowest external K+ supply of 0.02 mM, growth of
rice seedlings was suppressed by ;50% when nitrogen
was supplied as NH4

+, relative to NO3
– controls (Table 1).

Growth on NH4
+ was also significantly lower at 0.1 mM

[K+]ext, although to a much lesser extent (fresh weight
was diminished by only 10%). At higher levels of K+

supply, NH4
+ either increased fresh weight (by nearly 50%

at 1.5 mM [K+]ext), or had no significant effect relative to
NO3

– (at 40 mM). Maximal growth with NH4
+ as sole N

source was observed at 1.5 mM [K+]ext, rather than at the

highest provision of 40 mM, at which suboptimal growth
occurred.
The growth trends shown in Table 1 were reflected in

the K+ content of roots and shoots (Fig. 1). At the lowest
values of [K+]ext (0.02 mM and 0.1 mM), tissue K+

accumulation was strongly inhibited by NH4
+ relative to

NO3
–, in both roots and shoots. At 1.5 mM and 40 mM

[K+]ext, this relative inhibition was reversed in shoots,
with NH4

+-grown seedlings accumulating between 25%
and 40% more K+ than found in NO3

–-grown plants.
Compartmental analysis with the radiotracer 42K+ was

used to compare the influence of NH4
+ and NO3

– nutrition
on subcellular K+ fluxes and cytosolic K+ compartmenta-
tion in the rice seedlings (Fig. 2). Unidirectional influx of
K+ across the plasma membrane of root cells generally
increased with increasing [K+]ext, and a strong influence
of N source on this flux was observed (Fig. 3). At the
lowest values of [K+]ext (0.02 mM and 0.1 mM), K+

influx was significantly inhibited with NH4
+ nutrition in

rice, paralleling the inhibition of growth and K+ accumu-
lation in tissue. At 1.5 mM [K+]ext, no difference was seen
in K+ influx in seedlings grown with either NH4

+ or NO3
–,

while, surprisingly, at the highest [K+]ext value of 40 mM,
influx was stimulated by NH4

+ provision.
Figure 4 shows cytosolic concentrations of K+ ([K+]cyt)

for roots of rice seedlings, over the range of tested
conditions. Again, a strong interaction between K and N
nutrition was observed: at the same values of low [K+]ext
and high NH4

+ that brought about growth inhibition, tissue
K+ suppression, and lower influx of K+, there was
a significant decline in [K+]cyt in roots of rice seedlings.
This trend was not seen at higher [K+]ext; on the contrary,
at the highest [K+]ext, cytosolic K+ pools of rice were
larger under NH4

+ nutrition. Interestingly, increasing
[K+]ext from the HATS range value of 0.1 mM to the

Table 1. Tissue fresh weight (root+shoot) for 3-week-old rice
seedlings (shoot fresh weights are shown in parentheses)

Error bars refer to 6SEM (n > 5 replicates). Asterisks indicate
significantly higher means between N treatments for each K+ condition
examined, with P < 0.05.

[K+]ext Plant fresh weight (mg)

NO3
– treatment NH4

+ treatment

0.02 109610* (5566*) 5264 (3362)
0.1 30067* (17064) 26765 (17263)
1.5 251627 (134616) 367631* (210618*)
40 244633 (128617) 220623 (130615)

Fig. 1. K+ tissue content of rice seedlings grown at four external K+

concentrations (0.02, 0.1, 1.5, and 40 mM). Error bars refer to 6SEM
of 6–18 replicates, with asterisks indicating significantly different means
between N treatments (NO3

– or NH4
+) for each K+ condition and plant

organ (root or shoot) examined (P < 0.05).

NH4
+-stimulated and -inhibited K+ transport in rice 3417



LATS range value of 1.5 mM resulted in a lowering of
[K+]cyt under steady-state conditions, regardless of the N
source.
Figure 5 illustrates the effect of N source on 42K+

transport to the shoot in rice seedlings. Rice seedlings
showed suppression of 42K+ translocation at the lowest
[K+]ext values (0.02 mM and 0.1 mM), with a maximum
65% reduction at the lowest K+ condition. At higher
[K+]ext (1.5 mM and 40 mM), NH4

+-grown rice displayed
substantially (as much as 90%) greater translocation of
42K+, compared with NO3

– controls.
Figure 6 shows the influx of NH4

+ into intact rice
seedlings determined by short-term (5 min) labelling
using 13NH4

+. Maximal NH4
+ influx was found when

[K+]ext was low (0.02 mM or 0.1 mM), ranging between
61 lmol g�1 h�1 and 86 lmol g�1 h�1. Elevating [K+]ext

into the LATS concentration range for K+ significantly
reduced NH4

+ influx, by >60% of the maximum NH4
+

influx determined under K+ HATS conditions. Compart-
mental analysis conducted using 13NH4

+ showed similar
trends, with elevated K+ supply drastically reducing
NH4

+ influx (Fig. 6, inset). In addition, when seedlings
were grown under a K+ LATS, rather than a K+ HATS
condition (5 mM versus 0.02 mM [K+]ext), NH4

+ efflux
was reduced to a greater extent than influx, resulting in
a decrease of the efflux:influx ratio from ;90% to
<70%.
Figure 7 shows the influx of K+ into rice seedlings, as

determined by short-term (5 min) accumulation of 42K+.
Non-steady-state influx experiments, in which seedlings
grown at low [K+]ext were transiently exposed to elevated

Fig. 2. 42K+ efflux pattern in roots of rice seedlings grown at 0.1 mM
K+ and 10 mM NH4

+. Shown is the entire data set (n¼15) for this
treatment, illustrating the reproducibility of the data. The dashed
line represents averaged 42K+ release from the cytosol. SEM for each
point was within 10% of the mean.

Fig. 3. Steady-state influx of K+ in roots of rice at 10 mM NO3
– or

NH4
+, and at four external [K+]. Error bars refer to 6SEM of 5–15

replicates, with asterisks indicating significantly different means
between N treatments for each K+ condition (P < 0.05).

Fig. 4. Cytosolic K+ concentrations (mM) as determined by compart-
mental analysis in roots of rice seedlings grown at 10 mM NO3

– or NH4
+,

and at four external [K+]. Error bars refer to 6SEM of 5–15 replicates,
with asterisks indicating significantly different means between N
treatments for each K+ condition (P < 0.05).

Fig. 5. Shoot accumulation of 42K+ following labelling of rice
seedlings grown at 10 mM NO3

– or NH4
+, and at four external [K+].

Error bars refer to 6SEM of 5–15 replicates, with asterisks indicating
significantly different means between N treatments for each K+

condition (P < 0.05).
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(between 0.1 mM and 5 mM) [K+]ext, showed that K+

influx increased significantly with increased substrate,
regardless of N condition. However, K+ influx was the
highest in NH4

+-grown seedlings following the change in
[K+]ext, with K+ influx increasing by 5–6.5 times, as
compared with NO3

–-grown seedlings, in which influx
only doubled.

Discussion

NH4
+ toxicity affects many, if not most, plant species,

although the mechanisms by which this occurs are still
poorly understood (see review by Britto and Kronzucker,
2002). However, a common feature of NH4

+ toxicity in
plant systems is the suppression of tissue cation content,
particularly that of potassium (Kirkby and Mengel, 1967;
Kirkby, 1968; Van Beusichem et al., 1988; Engels and
Marschner, 1993; Gerendás et al., 1997; Santa-Marı́a
et al., 2000). K+ homeostasis is also implicated as a central
factor in resistance to sodium toxicity (Benlloch et al.,
1994; Cuin and Shabala, 2005), and may thus play a broad
role in ion stress tolerance. To understand better the role
of K+ in NH4

+ toxicity and tolerance, the influence of
nitrogen source and K+ supply on plant growth and K+

uptake, accumulation, cytosolic pools, and root-to-shoot
translocation, in rice, an ammonium-tolerant plant species,
was examined. An NH4

+ concentration of 10 mM was used
to induce toxicity under conditions that still fall within the
range found in fertilized agricultural soils (Britto and
Kronzucker, 2002), and the K+ concentrations were
chosen to represent the high- and low-affinity transport
system ranges, as well as to reflect soil concentrations
(Reisenauer, 1966; Hawkesford and Miller, 2004). The
one exception to this was the 40 mM K+ treatment, which
was used to test the possible limits to which elevated K+

supply can relieve NH4
+ stress.

Fig. 6. Effect of [K+]ext on NH4
+ influx, directly measured using short-term (5 min) labelling with 13N. Rice seedlings were grown and tested under

steady-state conditions, at 10 mM NH4
+ and four external [K+]. Error bars refer to 6SEM of seven replicates. Different letters refer to significantly

different means (P < 0.05). Inset: steady-state component fluxes of NH4
+ in roots of rice grown at 10 mM NH4

+ and external K+ concentrations
representing K+ HATS (0.02 mM [K+]ext) and LATS (5 mM [K+]ext). Bars are divided into net flux (filled segments) and efflux (open segments),
which together comprise the influx term. Error bars refer to 6SEM of three replicates. Different letters refer to significantly different influx means
(P < 0.05).

Fig. 7. Effect of changing external [K+] on K+ influx, measured directly
using short-term labelling. Rice seedlings were grown at 0.1 mM
[K+]ext, and either 10 mM [NO3

–]ext (open circles) or 10 mM [NH4
+]ext

(filled circles), and labelled in solutions spanning 0.1–5 mM [K+]ext for
5 min. Error bars refer to 6SEM of 4–10 replicates.

NH4
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Rice has been traditionally considered to be an
ammonium specialist (Wang et al., 1993), partly because
the low oxygen environment found in rice paddy yields
NH4

+, rather than NO3
–, as the dominant nitrogen source

(Shen, 1969; Arth et al., 1998). On the other hand, it has
been shown that rice seedlings are able to take up NO3

– at
higher rates than NH4

+ (Kronzucker et al., 2000). In
support of the claim that rice may not be an NH4

+

specialist under all conditions, the present study shows
that, at low concentrations of K+ (0.02 mM or 0.1 mM),
NH4

+ nutrition suppresses growth (Table 1), and reduces
K+ accumulation (Fig. 1) and influx (Fig. 3), relative to
NO3

– controls. Similarly, Bañuelos and co-workers (2002)
found that NH4

+ suppressed K+ uptake in excised rice roots
at low [K+]ext. In the present study, the effects observed at
low [K+]ext were relieved when [K+]ext was raised to
1.5 mM and higher, indicating that NH4

+ tolerance in rice
depends upon a substantial K+ supply. Increasing [K+]ext
also reduced the amount of NH4

+ futile cycling, with
significant reductions in NH4

+ efflux, influx, and the ratio
of the two (Fig. 6). A comparison of all growth conditions
shows that the maximal biomass achieved was found not
with NO3

– but with NH4
+, and when K+ supply was

moderately high (1.5 mM). This indicates that rice indeed
prefers this N source as long as K+ conditions are
optimized (Table 1).
Despite reduced growth with low [K+]ext, rice seedlings

were not as severely affected by NH4
+ as was previously

shown for seedlings of barley (Kronzucker et al., 2003;
Szczerba et al., 2006a), considered to be an NH4

+-sensitive
species. Although growth in both species was reduced by
;50% at the lowest [K+]ext (0.02 mM) with NH4

+ as the N
source, the influx, cytosolic pool size and tissue content of
K+ were reduced by 80–90% in barley, but only by ;60%
in rice. Moreover, increasing [K+]ext from 0.02 mM to
0.1 mM resulted in marked improvements in rice grown
with NH4

+: growth was suppressed only by 10%, and
influx, [K+]cyt, and tissue K+ content only by 20–40%, as
compared with NO3

–-grown seedlings. In contrast, barley
seedlings still showed a substantial (30%) growth de-
pression, and an even greater (60–90%) suppression of
influx, [K+]cyt, and K+ tissue content at this external [K+].
These differences illustrate that, despite displaying some
sensitivity to NH4

+, K+ homeostasis in rice shows more
effective recovery from NH4

+ toxicity than barley. This
difference may be attributable to three possible effects.
First, the high-affinity K+ transport mechanism may be
more resistant to NH4

+ in rice, perhaps due to greater
binding affinity for K+, thus providing greater relief from
competitive inhibition with NH4

+ (Vale et al., 1987; Wang
et al., 1996). Secondly, NH4

+-resistant K+ transport via
channels may occur at a lower external concentration of
K+ in rice. It has been shown by Spalding et al. (1999) in
Arabidopsis that 55–63% of K+ permeability in the HATS
range can be mediated by AKT1, the channel believed to

be the dominant mediator of low-affinity K+ transport
(Gierth and Mäser, 2007). This contribution may perhaps
be even higher in rice, particularly under conditions with
NH4

+, as has been suggested by Rodrı́guez-Navarro and
Rubio (2006). On the other hand, it has been shown that
membrane potentials in rice are typically much less
negative than those in Arabidopsis, particularly when
grown with NH4

+, which causes permanent membrane
depolarization in rice (Wang et al., 1994; Britto et al.,
2001). Thirdly, NH4

+ may promote gene expression of
high-affinity K+ transporters in rice, as has been found
with LeHAK5 in tomato plants (Nieves-Cordones et al.,
2007). Conversely, NH4

+ may reduce expression of HAK/
KUP/KT transporters in rice, as has been found in
Arabidopsis and pepper plants (Martı́nez-Cordero et al.,
2005; Qi et al., 2008); however, NH4

+ may be less
effective in this capacity in rice than in barley.
Surprisingly, however, at the highest [K+]ext (40 mM),

a growth decline was observed in rice seedlings, regard-
less of N source, even though K+ influx and tissue
accumulation, cytosolic [K+], and 42K+ translocation were
all maximized. In previous work, a similar decline was
found in NH4

+-grown barley seedlings when [K+]ext was
increased from 1.5 mM to 40 mM (Szczerba et al., 2008).
These reductions in growth under the extreme K+

condition may in part be a consequence of the energetic
drain on root cells catalysing substantial futile cycling of
both K+ and NH4

+ under high nutrient supply (Britto et al.,
2001, 2002; Britto and Kronzucker, 2006; Szczerba et al.,
2006a).
It is remarkable that the steady-state acquisition of K+ at

40 mM in rice should be substantially (;40%) higher
under NH4

+ nutrition than under NO3
–, particularly when

both NH4
+ and K+ can have a depolarizing effect on the

plasma membrane in this species, thus reducing the
driving force for K+ entry into the cell (Wang et al.,
1994; Britto et al., 2001; Kronzucker et al., 2001). A
stimulation of low-affinity K+ influx by NH4

+ was also
seen in measurements of K+ influx following brief
exposure (5 min) of seedlings grown at 0.1 mM [K+]ext
to higher K+ concentrations (Fig. 7). This shows that
NH4

+-grown plants have significantly enhanced K+ influx
under non-steady-state conditions, relative to NO3

– con-
trols. Indeed, at the highest [K+]ext tested in this
experiment, the influx of K+ was more than double that
of seedlings grown with NO3

– (Fig. 7). Under such non-
steady-state conditions as shown in Fig. 7, NH4

+ appears to
‘prime’ K+ influx, allowing the plant to capitalize upon
a transient flush of K+ in the dynamic soil environment.
Such a priming mechanism may be the result of K+

utilizing NH4
+ transporters, as has been suggested by

a recent investigation in barley (Szczerba et al., 2008). As
was found in rice (Fig. 6), a reduction in NH4

+ influx was
observed following elevation of [K+]ext under non-steady-
state and steady-state conditions. NH4

+ transport has been
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shown to follow a pattern of uptake similar to K+, with
a high-affinity system at micromolar [NH4

+]ext, and a low-
affinity one at millimolar concentrations (Kronzucker
et al., 1996), but a peculiar aspect of low-affinity NH4

+

transport is that it is not down-regulated by high plant N
status, but, on the contrary, is substantially increased
(Wang et al., 1993; Rawat et al., 1999; Min et al., 2000;
Cerezo et al., 2001). It has been suggested that this
increase is due to the induction, or enhancement, of low-
affinity NH4

+ transport by NH4
+ itself (Cerezo et al., 2001).

Therefore, it is possible that under high [NH4
+]ext, K+

utilizes an induced NH4
+ transporter to enter the plant cell,

if K+ is present at a sufficiently high concentration, thus
accounting for the increased K+ flux under K+ LATS
conditions. The existence of common pathways for the
two ions is substantiated by numerous indications that
NH4

+ flux can occur via K+ transporters (Scherer et al.,
1984; Vale et al., 1987; Wang et al., 1996; White, 1996;
Nielsen and Schjoerring, 1998), a phenomenon that has
also been postulated for some components of Na+ influx
(e.g. Kader and Lindberg, 2005).
It should be pointed out, however, that the effect shown

in Fig. 7, when seedlings were transferred from a condition
of 0.1 mM [K+]ext to higher K+ concentrations, was only
temporary. At the steady state, K+ influx parity between
NH4

+ and NO3
– growth conditions was achieved at 1.5 mM

[K+]ext, signalling a longer term down-regulation of NH4
+-

related component(s) of K+ acquisition. The enhancement
of K+ influx by NH4

+ seen at the 40 mM steady-state
condition may also be the result of longer-term adapta-
tions, a view supported by others who have found that
NH4

+ can enhance K+ uptake in plant species when K+ is
supplied under nutrient-replete conditions (Daliparthy
et al., 1994, and references therein).
A broad correlation was seen between unidirectional K+

influx (Fig. 3) and cytosolic [K+] (Fig. 4) in root cells.
Accordingly, a number of different set points for [K+]cyt
were observed as the flux increased, confirming a previous
conclusion that the homeostatic control of cytosolic K+

pools is not as rigid as generally thought (Kronzucker
et al., 2003, 2006; Szczerba et al., 2006a). A particularly
striking observation was seen at 1.5 mM [K+]ext, in plants
growing with either N source: at this K+ concentration,
a dip in [K+]cyt was seen relative to the 0.1 mM or 40 mM
levels of [K+]ext. This pattern has been observed before for
nitrate-grown barley (Kronzucker et al., 2003, 2006;
Szczerba et al., 2006a), and it receives strong confirma-
tion in the present study by being visible in a second
species, and under two nitrogen regimes. The reasons for
this decline are not clear, but may be associated with the
switch between a condition dominated by high-affinity K+

transport to one dominated by a low-affinity system
(Britto and Kronzucker, 2006).
A high correlation was found in rice between root

[K+]cyt (Fig. 4) and both shoot K+ content (Fig. 8a;

R2¼0.82) and 42K+ transport to the shoot (Fig. 8b;
R2¼0.94). This suggests that the cytosolic concentration
of K+ in the root is an important driver of long-distance
K+ transport. A similar conclusion was derived for barley
seedlings, also grown under low K+ and high N nutrient
conditions, with NH4

+ suppressing [K+]cyt by 70%, and
shoot transport of K+ by 90% (Kronzucker et al., 2003).
Root-to-shoot K+ translocation is thought to be mediated
(in Arabidopsis) at least in part by one outwardly rectify-
ing, Shaker-type channel, designated as SKOR (Gaymard
et al., 1998; Mäser et al., 2001). The findings suggest that
NH4

+ may act directly on shoot K+ transporters, such as
SKOR, or may disrupt K+ translocation to the shoot by
reducing the driving force for shoot transport by reducing
[K+]cyt (Liu et al., 2006). Such effects may be reduced in
rice, unlike in barley, as rice has been shown to maintain
lower [NH4

+]cyt than found under identical conditions in
barley (Britto et al., 2001). Moreover, elevating [K+]ext
may mitigate the effects of NH4

+ upon K+ shoot

Fig. 8. Relationship between (A) shoot K+ content and the root
cytosolic K+ concentration, and (B) shoot 42K+ content and root
cytosolic K+ concentration in rice seedlings. Regression equations are:
(A) y¼1.839x + 39.513, with R2¼0.82, and (B) y¼5565.4x + 75.846,
with R2¼0.94.
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translocation in rice, by reducing both NH4
+ influx (Fig. 6)

and [NH4
+]cyt, as was also demonstrated recently in barley

(Szczerba et al., 2008). In that study, increasing [K+]ext,
from a HATS-mediated to LATS-mediated transport
condition, reduced NH4

+ influx by >60% and [NH4
+]cyt by

3–4 times. There, as well as in the present study, it is
possible that the plasma membrane depolarization typically
brought about by increased K+ supply leads to a reduced
driving force for passive NH4

+ entry into the cell.
The hypothesis that K+ acquisition and homeostasis in

rice is resistant to NH4
+ nutrition was only partially borne

out. Indeed, as with most other plant species, some
disruption of growth, and of K+ acquisition and distribu-
tion, was seen under low K+ (reflective of high-affinity K+

transport conditions). However, at 1.5 mM [K+]ext, growth
was markedly greater under NH4

+ nutrition, and NH4
+

stimulated K+ acquisition at elevated [K+]ext, resulting in
increased K+ transport into root cells, tissue K+, and 42K+

translocation to the shoot. Importantly, these apparent
advantages translate into superior growth at the moderate
LATS concentration of 1.5 mM [K+]ext. At 40 mM, in
contrast, increased K+ acquisition was associated with
a growth depression, which may be attributable to the
combined energy demands of futile NH4

+ and K+ cycling at
the root plasma membrane, as demonstrated elsewhere for
the two nutrient ions (Britto et al., 2001, 2002; Szczerba
et al., 2006a, 2008). The efficient recovery from NH4

+

toxicity, and superior growth of rice with NH4
+, under

moderate K+ conditions, demonstrate the close association
of these two ions in the context of optimal plant growth,
and may offer a focal point for the bioengineering of
ammonium tolerance into sensitive crop genotypes.
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