CSCA48 Winter 2015
 Week 10 - Sorting

Anna Bretscher

March 18/19, 2015

Why Sorting?

- A big part of computer science - happens all the time

Why Sorting?

- A big part of computer science - happens all the time
- Sorting algorithms have been well studied and therefore developed

Why Sorting?

- A big part of computer science - happens all the time
- Sorting algorithms have been well studied and therefore developed
- Sorting algorithms are interesting to analyze

Why Sorting?

- A big part of computer science - happens all the time
- Sorting algorithms have been well studied and therefore developed
- Sorting algorithms are interesting to analyze
- Good examples of recursion

Why Sorting?

- A big part of computer science - happens all the time
- Sorting algorithms have been well studied and therefore developed
- Sorting algorithms are interesting to analyze
- Good examples of recursion
- Non-recursive sorting algorithms have invariants:

Why Sorting?

- A big part of computer science - happens all the time
- Sorting algorithms have been well studied and therefore developed
- Sorting algorithms are interesting to analyze
- Good examples of recursion
- Non-recursive sorting algorithms have invariants:
- Invariant: A statement that is true at the end of each iteration of a loop.

Why Sorting?

- A big part of computer science - happens all the time
- Sorting algorithms have been well studied and therefore developed
- Sorting algorithms are interesting to analyze
- Good examples of recursion
- Non-recursive sorting algorithms have invariants:
- Invariant: A statement that is true at the end of each iteration of a loop.
- Use invariants to write code/prove code works

Insertion Sort

- Very simple

Insertion Sort

- Very simple
- Takes O(??) time
- Done in-place

Insertion Sort

- Very simple
- Takes O(??) time
- Done in-place
- Idea:

```
for x in L:
    insert x into the correct position in sorted list S
```


Insertion Sort

- Very simple
- Takes O(??) time
- Done in-place
- Idea:

```
for x in L:
    insert x into the correct position in sorted list S
```

- Invariant: S is sorted

Insertion Sort

- Very simple
- Takes O(??) time
- Done in-place
- Idea:

```
for x in L:
    insert x into the correct position in sorted list S
```

- Invariant: S is sorted
- When is Insertion Sort fairly efficient?

Heap Sort

- Given a list, return it sorted as S
- What was the complexity again?

Heap Sort

- Given a list, return it sorted as S
- What was the complexity again?
- Build the heap $\mathrm{H}-\mathrm{O}(\mathrm{n})$

Heap Sort

- Given a list, return it sorted as S
- What was the complexity again?
- Build the heap $\mathrm{H}-\mathrm{O}(\mathrm{n})$
while H not empty:

Heap Sort

- Given a list, return it sorted as S
- What was the complexity again?
- Build the heap $\mathrm{H}-\mathrm{O}(\mathrm{n})$

$$
\begin{aligned}
& \text { while } H \text { not empty: } \\
& \qquad m=\text { extract_min() }
\end{aligned}
$$

Heap Sort

- Given a list, return it sorted as S
- What was the complexity again?
- Build the heap $\mathrm{H}-\mathrm{O}(\mathrm{n})$

$$
\begin{aligned}
& \text { while } H \text { not empty: } \\
& \qquad m=\text { extract min() } \\
& \text { append } m \text { to } S
\end{aligned}
$$

Heap Sort

- Given a list, return it sorted as S
- What was the complexity again?
- Build the heap $\mathrm{H}-\mathrm{O}(\mathrm{n})$
while H not empty:
$m=$ extract_min()
append m to S
- Each extract_min-O(log n)

Heap Sort

- Given a list, return it sorted as S
- What was the complexity again?
- Build the heap $\mathrm{H}-\mathrm{O}(\mathrm{n})$

$$
\text { while } \mathrm{H} \text { not empty: }
$$

$$
m=\text { extract_min() }
$$

$$
\text { append } m \text { to } S
$$

- Each extract min - O(log n)
- We do this n times is for $O(n \log n)$

Merge Sort

- Divide and Conquer algorithm

Merge Sort

- Divide and Conquer algorithm
- Split the list into L1 and L2

Merge Sort

- Divide and Conquer algorithm
- Split the list into L1 and L2
- Recursively sort L1 and L2

Merge Sort

- Divide and Conquer algorithm
- Split the list into L1 and L2
- Recursively sort L1 and L2
- Merge L1 and L2 into a single sorted list

Merge Sort

- Divide and Conquer algorithm
- Split the list into L1 and L2
- Recursively sort L1 and L2
- Merge L1 and L2 into a single sorted list
- How do we merge two sorted lists?

Merge Sort

- Divide and Conquer algorithm
- Split the list into L1 and L2
- Recursively sort L1 and L2
- Merge L1 and L2 into a single sorted list
- How do we merge two sorted lists?
while (neither L1 nor L2 are empty):

Merge Sort

- Divide and Conquer algorithm
- Split the list into L1 and L2
- Recursively sort L1 and L2
- Merge L1 and L2 into a single sorted list
- How do we merge two sorted lists?

```
while (neither L1 nor L2 are empty):
    move min(L1[0], L2[0]) to S
```


Merge Sort

- Divide and Conquer algorithm
- Split the list into L1 and L2
- Recursively sort L1 and L2
- Merge L1 and L2 into a single sorted list
- How do we merge two sorted lists?

```
while (neither L1 nor L2 are empty):
    move min(L1[0], L2[0]) to S
Append rest of non-empty list to S
```


Merge Sort

mergesort (L) :

$$
\begin{aligned}
& \text { if len }(L)<2, \text { return } L \\
& \text { split } L \text { into } L 1 \text { and } L 2 \\
& S 1=\text { mergesort }(L 1) \\
& S 2=\text { mergesort }(L 2) \\
& S=\text { merge(S1, } S 2) \\
& \text { return } S
\end{aligned}
$$

Complexity of Merge Sort

- How many times do we "divide"? how many levels of recursion are there?
- Start with length n, then $\frac{n}{2}$, then $\frac{n}{4}, \ldots, 1$

Complexity of Merge Sort

- How many times do we "divide"? how many levels of recursion are there?
- Start with length n, then $\frac{n}{2}$, then $\frac{n}{4}, \ldots, 1$
- So $\lceil\log (n)\rceil$ levels

Complexity of Merge Sort

- How many times do we "divide"? how many levels of recursion are there?
- Start with length n, then $\frac{n}{2}$, then $\frac{n}{4}, \ldots, 1$
- So $\lceil\log (n)\rceil$ levels
- How much work do we do per level?

Complexity of Merge Sort

- How many times do we "divide"? how many levels of recursion are there?
- Start with length n, then $\frac{n}{2}$, then $\frac{n}{4}, \ldots, 1$
- So $\lceil\log (n)\rceil$ levels
- How much work do we do per level?
- Visit each item in the list, so n steps

Complexity of Merge Sort

- How many times do we "divide"? how many levels of recursion are there?
- Start with length n, then $\frac{n}{2}$, then $\frac{n}{4}, \ldots, 1$
- So $\lceil\log (n)\rceil$ levels
- How much work do we do per level?
- Visit each item in the list, so n steps
- Total: O(n $\log n)$

QUICKSORT

- Divide and Conquer like Mergesort

QUICKSORT

- Divide and Conquer like Mergesort
- Idea:

QUICKSORT

- Divide and Conquer like Mergesort
- Idea:

$$
\text { Select an item from } L \text { to be the pivot }
$$

QUICKSORT

- Divide and Conquer like Mergesort
- Idea:

$$
\begin{aligned}
& \text { Select an item from L to be the pivot } \\
& \text { Split L into three sublists: L1, L2, L3 }
\end{aligned}
$$

QUICKSORT

- Divide and Conquer like Mergesort
- Idea:

```
Select an item from L to be the pivot
Split L into three sublists: L1, L2, L3
L1 }\leftarrow\mathrm{ values in L smaller than the pivot
```


QUICKSORT

- Divide and Conquer like Mergesort
- Idea:

```
Select an item from L to be the pivot
Split L into three sublists: L1, L2, L3
L1 \leftarrow values in L smaller than the pivot
L2 \leftarrow values in L equal to the pivot
```


QUICKSORT

- Divide and Conquer like Mergesort
- Idea:

```
Select an item from L to be the pivot
Split L into three sublists: L1, L2, L3
L1 \leftarrow values in L smaller than the pivot
L2 \leftarrow values in L equal to the pivot
L3 \leftarrow values in L larger than the pivot
```


QUICKSORT

- Divide and Conquer like Mergesort
- Idea:

```
Select an item from L to be the pivot
Split L into three sublists: L1, L2, L3
L1 \leftarrow values in L smaller than the pivot
L2 \leftarrow values in L equal to the pivot
L3 \leftarrow values in L larger than the pivot
S1 = quicksort(L1)
S3 = quicksort(L3)
```


QUICKSORT

- Divide and Conquer like Mergesort
- Idea:

```
Select an item from L to be the pivot
Split L into three sublists: L1, L2, L3
L1 \leftarrow values in L smaller than the pivot
L2 \leftarrow values in L equal to the pivot
L3 \leftarrow values in L larger than the pivot
S1 = quicksort(L1)
S3 = quicksort(L3)
Return S1 + L2 + S3
```

