
CSCA48 WINTER 2015
WEEK 10 - SORTING

Anna Bretscher

March 18/19, 2015

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 1 / 8



WHY SORTING?

A big part of computer science - happens all the time

Sorting algorithms have been well studied and therefore
developed
Sorting algorithms are interesting to analyze
Good examples of recursion
Non-recursive sorting algorithms have invariants:

Invariant: A statement that is true at the end of each iteration of a
loop.
Use invariants to write code/prove code works

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 2 / 8



WHY SORTING?

A big part of computer science - happens all the time
Sorting algorithms have been well studied and therefore
developed

Sorting algorithms are interesting to analyze
Good examples of recursion
Non-recursive sorting algorithms have invariants:

Invariant: A statement that is true at the end of each iteration of a
loop.
Use invariants to write code/prove code works

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 2 / 8



WHY SORTING?

A big part of computer science - happens all the time
Sorting algorithms have been well studied and therefore
developed
Sorting algorithms are interesting to analyze

Good examples of recursion
Non-recursive sorting algorithms have invariants:

Invariant: A statement that is true at the end of each iteration of a
loop.
Use invariants to write code/prove code works

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 2 / 8



WHY SORTING?

A big part of computer science - happens all the time
Sorting algorithms have been well studied and therefore
developed
Sorting algorithms are interesting to analyze
Good examples of recursion

Non-recursive sorting algorithms have invariants:

Invariant: A statement that is true at the end of each iteration of a
loop.
Use invariants to write code/prove code works

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 2 / 8



WHY SORTING?

A big part of computer science - happens all the time
Sorting algorithms have been well studied and therefore
developed
Sorting algorithms are interesting to analyze
Good examples of recursion
Non-recursive sorting algorithms have invariants:

Invariant: A statement that is true at the end of each iteration of a
loop.
Use invariants to write code/prove code works

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 2 / 8



WHY SORTING?

A big part of computer science - happens all the time
Sorting algorithms have been well studied and therefore
developed
Sorting algorithms are interesting to analyze
Good examples of recursion
Non-recursive sorting algorithms have invariants:

Invariant: A statement that is true at the end of each iteration of a
loop.

Use invariants to write code/prove code works

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 2 / 8



WHY SORTING?

A big part of computer science - happens all the time
Sorting algorithms have been well studied and therefore
developed
Sorting algorithms are interesting to analyze
Good examples of recursion
Non-recursive sorting algorithms have invariants:

Invariant: A statement that is true at the end of each iteration of a
loop.
Use invariants to write code/prove code works

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 2 / 8



INSERTION SORT

Very simple

Takes O(??) time
Done in-place
Idea:

for x in L:
insert x into the correct position in sorted list S

Invariant: S is sorted

When is Insertion Sort fairly efficient?

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 3 / 8



INSERTION SORT

Very simple
Takes O(??) time
Done in-place

Idea:
for x in L:

insert x into the correct position in sorted list S

Invariant: S is sorted

When is Insertion Sort fairly efficient?

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 3 / 8



INSERTION SORT

Very simple
Takes O(??) time
Done in-place
Idea:

for x in L:
insert x into the correct position in sorted list S

Invariant: S is sorted

When is Insertion Sort fairly efficient?

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 3 / 8



INSERTION SORT

Very simple
Takes O(??) time
Done in-place
Idea:

for x in L:
insert x into the correct position in sorted list S

Invariant: S is sorted

When is Insertion Sort fairly efficient?

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 3 / 8



INSERTION SORT

Very simple
Takes O(??) time
Done in-place
Idea:

for x in L:
insert x into the correct position in sorted list S

Invariant: S is sorted

When is Insertion Sort fairly efficient?

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 3 / 8



HEAP SORT

Given a list, return it sorted as S
What was the complexity again?

Build the heap H - O(n)
while H not empty:

m = extract min()

append m to S

Each extract min - O(log n)
We do this n times is for O(n log n)

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 4 / 8



HEAP SORT

Given a list, return it sorted as S
What was the complexity again?
Build the heap H - O(n)

while H not empty:

m = extract min()

append m to S

Each extract min - O(log n)
We do this n times is for O(n log n)

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 4 / 8



HEAP SORT

Given a list, return it sorted as S
What was the complexity again?
Build the heap H - O(n)
while H not empty:

m = extract min()

append m to S

Each extract min - O(log n)
We do this n times is for O(n log n)

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 4 / 8



HEAP SORT

Given a list, return it sorted as S
What was the complexity again?
Build the heap H - O(n)
while H not empty:

m = extract min()

append m to S

Each extract min - O(log n)
We do this n times is for O(n log n)

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 4 / 8



HEAP SORT

Given a list, return it sorted as S
What was the complexity again?
Build the heap H - O(n)
while H not empty:

m = extract min()

append m to S

Each extract min - O(log n)
We do this n times is for O(n log n)

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 4 / 8



HEAP SORT

Given a list, return it sorted as S
What was the complexity again?
Build the heap H - O(n)
while H not empty:

m = extract min()

append m to S

Each extract min - O(log n)

We do this n times is for O(n log n)

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 4 / 8



HEAP SORT

Given a list, return it sorted as S
What was the complexity again?
Build the heap H - O(n)
while H not empty:

m = extract min()

append m to S

Each extract min - O(log n)
We do this n times is for O(n log n)

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 4 / 8



MERGE SORT

Divide and Conquer algorithm

Split the list into L1 and L2
Recursively sort L1 and L2
Merge L1 and L2 into a single sorted list
How do we merge two sorted lists?

while (neither L1 nor L2 are empty):
move min(L1[0], L2[0]) to S

Append rest of non-empty list to S

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 5 / 8



MERGE SORT

Divide and Conquer algorithm
Split the list into L1 and L2

Recursively sort L1 and L2
Merge L1 and L2 into a single sorted list
How do we merge two sorted lists?

while (neither L1 nor L2 are empty):
move min(L1[0], L2[0]) to S

Append rest of non-empty list to S

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 5 / 8



MERGE SORT

Divide and Conquer algorithm
Split the list into L1 and L2
Recursively sort L1 and L2

Merge L1 and L2 into a single sorted list
How do we merge two sorted lists?

while (neither L1 nor L2 are empty):
move min(L1[0], L2[0]) to S

Append rest of non-empty list to S

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 5 / 8



MERGE SORT

Divide and Conquer algorithm
Split the list into L1 and L2
Recursively sort L1 and L2
Merge L1 and L2 into a single sorted list

How do we merge two sorted lists?

while (neither L1 nor L2 are empty):
move min(L1[0], L2[0]) to S

Append rest of non-empty list to S

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 5 / 8



MERGE SORT

Divide and Conquer algorithm
Split the list into L1 and L2
Recursively sort L1 and L2
Merge L1 and L2 into a single sorted list
How do we merge two sorted lists?

while (neither L1 nor L2 are empty):
move min(L1[0], L2[0]) to S

Append rest of non-empty list to S

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 5 / 8



MERGE SORT

Divide and Conquer algorithm
Split the list into L1 and L2
Recursively sort L1 and L2
Merge L1 and L2 into a single sorted list
How do we merge two sorted lists?

while (neither L1 nor L2 are empty):

move min(L1[0], L2[0]) to S
Append rest of non-empty list to S

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 5 / 8



MERGE SORT

Divide and Conquer algorithm
Split the list into L1 and L2
Recursively sort L1 and L2
Merge L1 and L2 into a single sorted list
How do we merge two sorted lists?

while (neither L1 nor L2 are empty):
move min(L1[0], L2[0]) to S

Append rest of non-empty list to S

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 5 / 8



MERGE SORT

Divide and Conquer algorithm
Split the list into L1 and L2
Recursively sort L1 and L2
Merge L1 and L2 into a single sorted list
How do we merge two sorted lists?

while (neither L1 nor L2 are empty):
move min(L1[0], L2[0]) to S

Append rest of non-empty list to S

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 5 / 8



MERGE SORT

mergesort(L):

if len(L) < 2, return L

split L into L1 and L2

S1 = mergesort(L1)

S2 = mergesort(L2)

S = merge(S1, S2)

return S

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 6 / 8



COMPLEXITY OF MERGE SORT

How many times do we ”divide”? how many levels of recursion are
there?
Start with length n, then n

2 , then n
4 , . . . ,1

So dlog(n)e levels
How much work do we do per level?
Visit each item in the list, so n steps
Total: O(n log n)

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 7 / 8



COMPLEXITY OF MERGE SORT

How many times do we ”divide”? how many levels of recursion are
there?
Start with length n, then n

2 , then n
4 , . . . ,1

So dlog(n)e levels

How much work do we do per level?
Visit each item in the list, so n steps
Total: O(n log n)

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 7 / 8



COMPLEXITY OF MERGE SORT

How many times do we ”divide”? how many levels of recursion are
there?
Start with length n, then n

2 , then n
4 , . . . ,1

So dlog(n)e levels
How much work do we do per level?

Visit each item in the list, so n steps
Total: O(n log n)

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 7 / 8



COMPLEXITY OF MERGE SORT

How many times do we ”divide”? how many levels of recursion are
there?
Start with length n, then n

2 , then n
4 , . . . ,1

So dlog(n)e levels
How much work do we do per level?
Visit each item in the list, so n steps

Total: O(n log n)

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 7 / 8



COMPLEXITY OF MERGE SORT

How many times do we ”divide”? how many levels of recursion are
there?
Start with length n, then n

2 , then n
4 , . . . ,1

So dlog(n)e levels
How much work do we do per level?
Visit each item in the list, so n steps
Total: O(n log n)

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 7 / 8



QUICKSORT

Divide and Conquer like Mergesort

Idea:

Select an item from L to be the pivot
Split L into three sublists: L1, L2, L3
L1 ← values in L smaller than the pivot
L2 ← values in L equal to the pivot
L3 ← values in L larger than the pivot
S1 = quicksort(L1)
S3 = quicksort(L3)
Return S1 + L2 + S3

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 8 / 8



QUICKSORT

Divide and Conquer like Mergesort
Idea:

Select an item from L to be the pivot
Split L into three sublists: L1, L2, L3
L1 ← values in L smaller than the pivot
L2 ← values in L equal to the pivot
L3 ← values in L larger than the pivot
S1 = quicksort(L1)
S3 = quicksort(L3)
Return S1 + L2 + S3

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 8 / 8



QUICKSORT

Divide and Conquer like Mergesort
Idea:

Select an item from L to be the pivot

Split L into three sublists: L1, L2, L3
L1 ← values in L smaller than the pivot
L2 ← values in L equal to the pivot
L3 ← values in L larger than the pivot
S1 = quicksort(L1)
S3 = quicksort(L3)
Return S1 + L2 + S3

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 8 / 8



QUICKSORT

Divide and Conquer like Mergesort
Idea:

Select an item from L to be the pivot
Split L into three sublists: L1, L2, L3

L1 ← values in L smaller than the pivot
L2 ← values in L equal to the pivot
L3 ← values in L larger than the pivot
S1 = quicksort(L1)
S3 = quicksort(L3)
Return S1 + L2 + S3

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 8 / 8



QUICKSORT

Divide and Conquer like Mergesort
Idea:

Select an item from L to be the pivot
Split L into three sublists: L1, L2, L3
L1 ← values in L smaller than the pivot

L2 ← values in L equal to the pivot
L3 ← values in L larger than the pivot
S1 = quicksort(L1)
S3 = quicksort(L3)
Return S1 + L2 + S3

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 8 / 8



QUICKSORT

Divide and Conquer like Mergesort
Idea:

Select an item from L to be the pivot
Split L into three sublists: L1, L2, L3
L1 ← values in L smaller than the pivot
L2 ← values in L equal to the pivot

L3 ← values in L larger than the pivot
S1 = quicksort(L1)
S3 = quicksort(L3)
Return S1 + L2 + S3

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 8 / 8



QUICKSORT

Divide and Conquer like Mergesort
Idea:

Select an item from L to be the pivot
Split L into three sublists: L1, L2, L3
L1 ← values in L smaller than the pivot
L2 ← values in L equal to the pivot
L3 ← values in L larger than the pivot

S1 = quicksort(L1)
S3 = quicksort(L3)
Return S1 + L2 + S3

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 8 / 8



QUICKSORT

Divide and Conquer like Mergesort
Idea:

Select an item from L to be the pivot
Split L into three sublists: L1, L2, L3
L1 ← values in L smaller than the pivot
L2 ← values in L equal to the pivot
L3 ← values in L larger than the pivot
S1 = quicksort(L1)
S3 = quicksort(L3)

Return S1 + L2 + S3

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 8 / 8



QUICKSORT

Divide and Conquer like Mergesort
Idea:

Select an item from L to be the pivot
Split L into three sublists: L1, L2, L3
L1 ← values in L smaller than the pivot
L2 ← values in L equal to the pivot
L3 ← values in L larger than the pivot
S1 = quicksort(L1)
S3 = quicksort(L3)
Return S1 + L2 + S3

Anna Bretscher CSCA48 Winter 2015 March 18/19, 2015 8 / 8


