CSCA48 Winter 2015
 Week 9 - Worst Case Complexiy

Anna Bretscher

March 9, 2015

What is Complexity?

- A measure of how efficient an algorithm is.
Q. How should we evaluate the efficiency of an algorithm? should we code the algorithm in Python and time it for different values of n ?
A. No.
- This is machine dependent.
- Why choose Python? why not C or Java?
- Implementation details can alter the timing.
- Want a method that allows us to compare different algorithms for large input sizes without a computer.

Worst-CASE COMPLEXITY

- For an algorithm A, let $t(x)$ be the number of steps A takes on input x.
- Then, the worst-case time complexity of A on input of size n is

$$
T_{w c}(n) \stackrel{d}{=} \max _{|x|=n}\{t(x)\}
$$

- In words: Look at all the inputs of size n and take the time of the one that is the slowest.

What IS A STEP?

There are many conventions - we will use the following:

- method call $1+$ steps to evaluate each argument + steps to execute method
- return statement $1+$ steps to evaluate return value
- if statement, while statement (not the entire loop) $1+$ steps to evaluate exit condition
- assignment statement $1+$ steps to evaluate each side
- arithmetic, comparison, boolean operators $1+$ steps to evaluate each operand
- array access $1+$ steps to evaluate index
- member access 2 steps
- constants, variables 1 step

Often, we will just focus on operations or variable accesses.

Precondition. L is an array of integers.
Postcondition L sorted in non-decreasing order.

```
def insertion_sort (L):
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{i}=1\) & // 1: & steps \\
\hline while (i < len(L)) : & // 2: & steps \\
\hline \(\mathrm{t}=\mathrm{L}[\mathrm{i}]\) & // 3: & steps \\
\hline j \(=\) i & // 4: & steps \\
\hline while (j > 0 and L[j-1] > t) : & // 5: & steps \\
\hline \(L[j]=L[j-1]\) & // 6: & steps \\
\hline j \(=\) j-1 & // 7: & steps \\
\hline L[j] = t & // 8: & steps \\
\hline i \(=1+1\) & // 9: & steps \\
\hline
\end{tabular}
```


Notation.

- $t_{/ S}(L)$ is the number of steps or time for insertion_sort to run on a specific input L.
- $T_{I S}(n)$ is the worst case time for any input of size n.

Bounding $T_{I S}(n)$

Q. Why might we prefer $T_{I S}(n)$ to $t_{/ S}(L)$?
A. It is much more general.
Q. Why might computing $T_{I S}(n)$ be difficult?
A. We have to consider all possible inputs of size n .
\rightarrow We find upper and lower bounds for $T_{I S}(n)$.

Upper and Lower Bounds

Q. What do we mean by an upper bound for $T_{I S}(n)$?
A. The max number of steps that the code can make.
Q. What do we mean by a lower bound for $T_{/ S}(n)$?
A. We want the maximum number of steps that an input will force.
\rightarrow No input can take more steps than the upper bound.
\rightarrow A lower bound cannot take less steps than any input.

Finding an Upper Bound

```
def insertion_sort (L):
\begin{tabular}{|c|c|c|c|}
\hline \(i=1\) & // 1: & 3 & steps \\
\hline while (i < len(L)) : & // 2: & 5 & steps \\
\hline \(t=\mathrm{L}[\mathrm{i}]\) & // 3: & 5 & steps \\
\hline \(j=i\) & // 4: & 3 & steps \\
\hline while (j > 0 and L[j-1] > t) : & // 5: & 12 & steps \\
\hline \(L[j]=L[j-1]\) & // 6: & 9 & steps \\
\hline \(j=j-1\) & // 7: & 5 & steps \\
\hline \(A[j]=t\) & // 8: & 5 & steps \\
\hline \(i=i+1\) & // 9: & 5 & steps \\
\hline
\end{tabular}
```

Q. At most how many steps do lines 5-7 execute?
A. At most len(L) times the number of steps, so $n(9+5+12)+$ the loop test 12.
Q. At most how many steps do lines 2-9 take? line 1?
A. Loops at most n times, so $n(n 26+12+23)+5+3=26 n^{2}+35 n+8$.

Big Oh - The Upper Bound

Idea. Want a function $g(n)$ such that for

- BIG enough n, i.e., $n>b$,
- $T(n) \leq c \cdot g(n)$
- Where the constant $c \in \mathbb{R}^{+}$and $b \in \mathbb{N}$

Definition: Big Oh

- Let $g \in \mathcal{F} . O(g)$ is the set of functions $f \in \mathcal{F}$ such that

$$
\exists c \in \mathbb{R}^{+}, \exists b \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq b \rightarrow f(n) \leq c \cdot g(n)
$$

- Where \mathcal{F} is the set of functions, $f: \mathbb{N}_{k} \rightarrow \mathbb{R}_{0}^{+}$.

Big OH

- Let $g \in \mathcal{F} . O(g)$ is the set of functions $f \in \mathcal{F}$ such that

$$
\exists c \in \mathbb{R}^{+}, \exists b \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq b \rightarrow f(n) \leq c \cdot g(n)
$$

Insertion Sort

Recall that we discovered the number of steps insertion_sort does on a list of size n is at most

$$
T_{I S}(n) \leq 26 n^{2}+35 n+8 \forall n \geq 1
$$

Q. For which function $g(n)$ does $T_{I S}(n) \in O(g(n))$?
A. $g(n)=n^{2}$
Q. Why?
A. Notice that $26 n^{2}+35 n+8 \leq 26 n^{2}+35 n^{2}+8 n^{2}=69 n^{2}$ for $n \geq 1$.

Therefore, let $c=69$ and $b=1$.

Then $\exists c \in \mathbb{R}^{+}, \exists b \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq b \rightarrow T_{I S}(n) \leq c n^{2}$.

