
CSCA48 WINTER 2015
WEEK 10 - WORST CASE COMPLEXITY

Anna Bretscher

March 16, 2015

Anna Bretscher CSCA48 Winter 2015 March 16, 2015 1 / 9



LAST WEEK

Finding an upper bound on T(n), the number of steps an algorithm
takes in the worst case.
Gives us “Big Oh” or the asymptotic upper bound.
Find T(n) for insertion sort by only looking at the actual code.
We looked at insertion sort

Anna Bretscher CSCA48 Winter 2015 March 16, 2015 2 / 9



TODAY

Review “Big Oh”, O().
Understand insertion sort and calculate T(n) again.
Define the lower bound, Ω() on the worst case T(n).
Find Ω() for insertion sort.

Anna Bretscher CSCA48 Winter 2015 March 16, 2015 3 / 9



BIG OH

f (n) belongs to O(g(n)) if
there are constants c,b
such that f (n)≤ c ·g(n)

whenever n > b (for n big enough).
Note: we only care about the term with the largest exponent.
Why?

Anna Bretscher CSCA48 Winter 2015 March 16, 2015 4 / 9



UPPER BOUNDS

Looking at the code we have shown insertion sort in the worst
case takes at most O(n2) steps.
In fact, our analysis was a bit sloppy.
We assumed the inner loop always loops n times, but in fact, it
doesn’t.
Does our over counting matter?
Not this time...why?

Anna Bretscher CSCA48 Winter 2015 March 16, 2015 5 / 9



LOWER BOUNDS

There are two steps to proving the complexity of an algorithm.

Find an upper bound O(g(n)) for T (n).
Find a “bad” input that forces the algorithm to take at least g(n)
steps.
For insertion sort, is there an input that forces the algorithm to
take the most steps?

Anna Bretscher CSCA48 Winter 2015 March 16, 2015 6 / 9



INSERTION SORT

def insertion_sort (L):
i = 1 // 1: >1 steps
while (i < len(L)): // 2: >1 steps

t = L[i] // 3: >1 steps
j = i // 4: >1 steps
while (j > 0 and L[j-1] > t): // 5: >1 steps

L[j] = L[j-1] // 6: >1 steps
j = j-1 // 7: >1 steps

L[j] = t // 8: >1 steps
i = i+1 // 9: >1 steps

Let’s look at what it’s really doing!

Anna Bretscher CSCA48 Winter 2015 March 16, 2015 7 / 9

http://interactivepython.org/runestone/static/pythonds/SortSearch/TheInsertionSort.html


OMEGA: Ω()

We say that T(n) is bounded from below or

T(n) belongs to Ω(g(n)) if

there exists constant d ∈ R+, and b ∈ N such that

T (n)≥ d ·g(n) whenever n > b.

Anna Bretscher CSCA48 Winter 2015 March 16, 2015 8 / 9



PRACTICE

Prove each of the following:

n3−4n2 + 5 ∈ O(n3)

n2 + n logn ∈ Ω(n2)

n3−n
n2 ∈ O(n) and Ω(n).

n3−n2 + 5 ∈ Ω(n3)

Anna Bretscher CSCA48 Winter 2015 March 16, 2015 9 / 9


