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LAST WEEK

Finding an upper bound on T(n), the number of steps an algorithm
takes in the worst case.
Gives us “Big Oh” or the asymptotic upper bound.
Find T(n) for insertion sort by only looking at the actual code.
We looked at insertion sort
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TODAY

Review “Big Oh”, O().
Understand insertion sort and calculate T(n) again.
Define the lower bound, Ω() on the worst case T(n).
Find Ω() for insertion sort.
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BIG OH

f (n) belongs to O(g(n)) if
there are constants c,b
such that f (n)≤ c ·g(n)

whenever n > b (for n big enough).
Note: we only care about the term with the largest exponent.
Why?
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UPPER BOUNDS

Looking at the code we have shown insertion sort in the worst
case takes at most O(n2) steps.
In fact, our analysis was a bit sloppy.
We assumed the inner loop always loops n times, but in fact, it
doesn’t.
Does our over counting matter?
Not this time...why?
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LOWER BOUNDS

There are two steps to proving the complexity of an algorithm.

Find an upper bound O(g(n)) for T (n).
Find a “bad” input that forces the algorithm to take at least g(n)
steps.
For insertion sort, is there an input that forces the algorithm to
take the most steps?
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INSERTION SORT

def insertion_sort (L):
i = 1 // 1: >1 steps
while (i < len(L)): // 2: >1 steps

t = L[i] // 3: >1 steps
j = i // 4: >1 steps
while (j > 0 and L[j-1] > t): // 5: >1 steps

L[j] = L[j-1] // 6: >1 steps
j = j-1 // 7: >1 steps

L[j] = t // 8: >1 steps
i = i+1 // 9: >1 steps

Let’s look at what it’s really doing!
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http://interactivepython.org/runestone/static/pythonds/SortSearch/TheInsertionSort.html


OMEGA: Ω()

We say that T(n) is bounded from below or

T(n) belongs to Ω(g(n)) if

there exists constant d ∈ R+, and b ∈ N such that

T (n)≥ d ·g(n) whenever n > b.
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PRACTICE

Prove each of the following:

n3−4n2 + 5 ∈ O(n3)

n2 + n logn ∈ Ω(n2)

n3−n
n2 ∈ O(n) and Ω(n).

n3−n2 + 5 ∈ Ω(n3)
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