CSCA48 WINTER 2015 WEEK 9 - BUILDING HEAPS

Anna Bretscher

March 9, 2015

Anna Bretscher

CSCA48 Winter 2015

- So far, we have built a *heap* by *inserting* all the elements.
- There is a better way using *heapify*...

- **Q**. Given an array *A* of *elements*, how can we build a *heap* efficiently *in-place*?
- A. We call *heapify* on the subtrees of height 1, then height 2, all the way to height *h* of the heap.

Consider an array:

 $\left[8,9,2,10,3,7,5,1,4,6\right]$

```
[8, 9, 2, 10, 3, 7, 5, 1, 4, 6]
```

Let's build the heap:

$\mathsf{L} = [\, 8, \, 9, \, 2, \, 10, \, 3, \, 7, \, 5, \, 1, \, 4, \, 6]$

- Q. Which values in this *list* represent *leaf* nodes in a heap?
- **A.** 7,5, 1, 4, 6
- **Q.** Considering only the *list*, how do we know which values are *leaf* nodes?
- **A.** Consider the *last leaf* or the value at index n = len(L) 1. Then it's parent is $\lfloor \frac{n-1}{2} \rfloor$.
- Q. What does this tell about the positions of the leaf nodes?
- **A.** They are in positions $\left(\lfloor \frac{n-1}{2} \rfloor + 1\right)$ to *n* or $\lfloor \frac{n+1}{2} \rfloor$ to *n*.

- We call *heapify* on the index $\lfloor \frac{n-1}{2} \rfloor$.
- And again on all indices from $\lfloor \frac{n-1}{2} \rfloor$ to 0.
- Each call to *heapify* creates a *sub-heap*.
- We could write a proof by *induction* that the last call creates a valid heap.

COMPLEXITY

- Q. How many calls do we make to heapify?
- **A.** From $0 \dots \lfloor \frac{n-1}{2} \rfloor$ so roughly $\frac{n}{2}$.
- Q. How many steps does each call make?
- **A.** No more than $c \cdot \log n$. Why?

We do at most a multiple of $n \log n$ steps.

Can we do better?

COMPLEXITY TAKE 2

- We call heapify on each subtree of $height \ge 1$.
- heapify runs in time *proportional* to the *height* of that subtree.
- We need to know how many subtrees of each height we have:

Height	Max Number of Trees
0	$\frac{n}{2}$
1	$\frac{\overline{n}}{2^2}$
2	$\frac{n}{2^3}$
3	$\frac{2n}{2^4}$
:	:
h	<u>_n</u>
	2 ⁿ⁺¹

COMPLEXITY TAKE 2

	Height	Max	Number of Trees (for n nodes)
-	0		$\frac{n}{2}$
	1		$\frac{\overline{n}}{2^2}$
	2		$\frac{2n}{2^3}$
	÷		÷
	h		$\frac{n}{2^{h+1}}$
Total Numbe	r of Steps	=	$\sum_{h=1}^{\log n} c \cdot h \times \text{ (number of subtrees of height } h\text{)}$
		=	$\sum_{h=1}^{\log n} c \cdot h \times \frac{n}{2^{h+1}} = \sum_{h=1}^{\log n} c \cdot n \times \frac{h}{2^{h+1}}$
		=	$\frac{cn}{2}\sum_{h=1}^{\log n}\frac{h}{2^{h}}=??$

SURPRISE!

Total Steps =
$$\frac{cn}{2}\sum_{h=1}^{\log n}\frac{h}{2^h} = ??$$

$$\sum_{h=1}^{\infty} \frac{h}{2^h} \le 2$$

Can you prove this?

1

Total Steps =
$$\frac{cn}{2} \sum_{h=1}^{\log n} \frac{h}{2^h}$$

 $\leq \frac{cn}{2} \sum_{h=1}^{\infty} \frac{h}{2^h}$
 $\leq \frac{cn}{2} \cdot 2 = cn$