CSCA48 Winter 2015
 Week 9 - Building Heaps

Anna Bretscher

March 9, 2015

Building Heaps

- So far, we have built a heap by inserting all the elements.
- There is a better way using heapify...

Building Heaps

Q. Given an array A of elements, how can we build a heap efficiently in-place?
A. We call heapify on the subtrees of height 1 , then height 2 , all the way to height h of the heap.

Consider an array:

$$
[8,9,2,10,3,7,5,1,4,6]
$$

Building Heaps

$$
[8,9,2,10,3,7,5,1,4,6]
$$

Let's build the heap:

Building Heaps

$$
\mathrm{L}=[8,9,2,10,3,7,5,1,4,6]
$$

Q. Which values in this list represent leaf nodes in a heap?
A. $7,5,1,4,6$
Q. Considering only the list, how do we know which values are leaf nodes?
A. Consider the last leaf or the value at index $n=\operatorname{len}(L)-1$.

Then it's parent is $\left\lfloor\frac{n-1}{2}\right\rfloor$.
Q. What does this tell about the positions of the leaf nodes?
A. They are in positions $\left(\left\lfloor\frac{n-1}{2}\right\rfloor+1\right)$ to n or $\left\lfloor\frac{n+1}{2}\right\rfloor$ to n.

Building Heaps

- We call heapify on the index $\left\lfloor\frac{n-1}{2}\right\rfloor$.
- And again on all indices from $\left\lfloor\frac{n-1}{2}\right\rfloor$ to 0 .
- Each call to heapify creates a sub-heap.
- We could write a proof by induction that the last call creates a valid heap.

Complexity

Q. How many calls do we make to heapify?
A. From $0 \ldots\left\lfloor\frac{n-1}{2}\right\rfloor$ so roughly $\frac{n}{2}$.
Q. How many steps does each call make?
A. No more than $c \cdot \log n$. Why?

We do at most a multiple of $n \log n$ steps.

Can we do better?

Complexity Take 2

- We call heapify on each subtree of height ≥ 1.
- heapify runs in time proportional to the height of that subtree.
- We need to know how many subtrees of each height we have:

Height	Max Number of Trees
0	$\frac{n}{2}$
1	$\frac{n}{2^{2}}$
2	$\frac{n}{2^{3}}$
3	$\frac{n}{2^{4}}$
\vdots	\vdots
h	$\frac{n}{2^{n+1}}$

Complexity Take 2

Height	Max Number of Trees (for n nodes)
0	$\frac{n}{2}$
1	$\frac{n}{2^{2}}$
2	$\frac{n}{2^{3}}$
\vdots	\vdots
h	$\frac{n}{2^{n+1}}$

$\begin{aligned} \text { Total Number of Steps } & =\sum_{h=1}^{\log n} c \cdot h \times(\text { number of subtrees of height } h \text {) } \\ & =\sum_{h=1}^{\log n} c \cdot h \times \frac{n}{2^{h+1}}=\sum_{h=1}^{\log n} c \cdot n \times \frac{h}{2^{h+1}} \\ & =\frac{c n}{2} \sum_{h=1}^{\log n} \frac{h}{2^{h}}=? ?\end{aligned}$

Surprise!

$$
\text { Total Steps }=\frac{c n}{2} \sum_{h=1}^{\log n} \frac{h}{2^{h}}=? ?
$$

Fact:

$$
\begin{aligned}
\sum_{h=1}^{\infty} \frac{h}{2^{h}} \leq 2 & \text { Can you prove this? } \\
\text { Total Steps } & =\frac{c n}{2} \sum_{h=1}^{\log n} \frac{h}{2^{h}} \\
& \leq \frac{c n}{2} \sum_{h=1}^{\infty} \frac{h}{2^{h}} \\
& \leq \frac{c n}{2} \cdot 2=c n
\end{aligned}
$$

