CSCA48 Winter 2015
 Week 11 - Balanced Trees

Anna Bretscher

March 23, 25/26, 2015

Why Balanced Trees?

- What is the worst case complexity of insert, delete, search in a binary search tree?
- O(n)
- We need to do something better...
- AVL trees
- B-trees
- Splay trees

AVL Trees

AVL Trees were invented by Adelson-Velskii and Landis in 1962.
An AVL tree is similar to a BST in that it

- stores values in the internal nodes and
- has a property relating the values stored in a subtree to the values in the parent node. but different from a BST because
- The height of an AVL tree is $O(\log n)$.
- Each internal node has a balance property equal to -1, 0, 1.
- Balance value = height of the left subtree - height of the right subtree.

AVL Trees

Q. What is the purpose of the balance property?
A. Ensures that the height is always a function of $\log n$.
Q. What information will we need to store in order to update the balance factors easily?
A. The height of the tree rooted at each node.

Searching in an AVL tree is the same as a BST.
Consider inserting 6 into the tree above.
Q: What are the new balance factors in the tree after inserting 6 ?
A: 17 has value 0

AVL Insertion

AVL Insertion

Q. Let's insert 35. What are the balance factors now?

AVL Insertion

Q. Let's insert 35. What are the balance factors now?

A. 32 has $-1,17$ has -2.44 has 0 .
Q. How do we solve this problem?

- We resolve the problem by doing a single rotation. How should we rotate?
- Counter clock-wise. 17 comes down, 32 moves up.

AVL Insertion

- We rotate counter clock-wise. 17 comes down, 32 moves up.

Q. How do we update the balance factors?
A. Update the heights first and then update balance factors.

AVL Insertion

Now let's insert 45.

- Notice the balance factors now. How should we resolve the problem?
A. Do a single rotation clock-wise about the 78.50 goes up, 78 down.
Q. What happens to the subtree rooted at 62 ?
A. It becomes the left subtree of 78 .

AVL Insertion

- Notice the updated balance factors.
- Let's insert 46 this time.

AVL Insertion

Q. Can we do a rotation about 48 ?
A. NO. Need a double rotation.

Double Rotation

Double Rotation

DELETE

- If the key is a leaf node, delete and rebalance
- If the key is an internal node, replace with predecessor/successor and rebalance.

Complexity

- Since the tree is balanced the height of an AVL tree is $\mathrm{O}(\log \mathrm{n})$.
- This means insert, delete and search are all O(log n).
- Searching for the location to insert/delete, takes $\mathrm{O}(\log \mathrm{n})$.
- Rebalancing takes at most $\mathrm{O}(\log \mathrm{n})$.

B-Trees

A B-tree of order m has the following properties:

- Internal nodes have at most m children (at most $m-1$ keys)
- Internal nodes (except the root) have at most $\left\lceil\frac{m}{2}\right\rceil$ children
- A non-leaf node with k children has $k-1$ keys
- All leaves are at the same distance from the root

B-TREES

- If a node has keys $k_{1}, k_{2}, \ldots, k_{i-1}$ and children $c_{1}, c_{2}, \ldots, c_{i}$ where $\left\lceil\frac{m}{2}\right\rceil \leq i \leq m$ then $c_{j}<k_{j}$ and $c_{i}>k_{i-1}$.
- All operations are $O(h)$ where h is the height of the tree.
- $\left.h \leq\left\lfloor\log _{\text {min }}\left(\frac{n+1}{2}\right)+1\right)\right\rfloor$ where min is the minimum number of elements in a node.
\star B-Trees are used in large file systems including those used by Mac OS/X, some Linux and Microsoft operating systems.

2-3 Trees

A 2-3 tree is a B-Tree of order $m=3$.

- Each node has at most 3 children and at least 2 children.
- Each node then has 1 or 2 keys.

- Let's insert 30.

2-3 Tree Insert

- Let's now insert 50.

- Now lets delete 15.

2-3 Tree Delete

Q. How can we delete 10 ?

A. We borrow from a sibling.

Delete With Merge

Q. What if we want to delete 5 ? Can we borrow?
A. No. Need to merge.

- Notice that this leaves a vacancy in the parent node...need to fix this by merging or borrowing again.

SUMMARY

For a 2-3 Tree or a B-Tree:
insert
If a node overflows we split the node and push up the middle value. If this causes an overflow repeatedly correct.
delete
If a node underflows we

- Try to borrow a key from a sibling (if the sibling has more than $\left\lceil\frac{m}{2}\right\rceil$ keys).
- Or merge the remaining keys with the parent node. If this causes an underflow repeatedly correct.

Splay Trees

- Binary trees
- Not always balanced
- And any one operation can be $O(n)$
Q. So why do we like them?
A. When we do a series of $k \geq n$ operations, the series of operations is $O(k \log (n))$.
- This means each operation's amortized cost is $O(\log n)$.
- Another nice feature, nodes regularly accessed will move towards the root.

SPLAYING

Basic idea: When we insert/search for a node x, move it to the root, balancing as we go.

This is called splaying.

- Keep moving x up the tree 2 nodes at a time until it becomes the root.
- Three varieties: zig-zag, zig-zig and zig.
- Depends on relationship to parent node $p \&$ grandparent node g.

ZIG

Splay on x.

- When the parent node p of x is the root.
- We zig.

Zig-Zig

Splay on x with parent p, grand-parent g :

- When the p and x are both left children or both right children.
- In other words, g, p and x make a straight line.
- We zig-zig.
- First rotate about $p-g$ and then rotate about $x-p$.

Zig-ZAG
Splay on x with parent p, grand-parent g :

- When one of p and x is a left child and the other is a right child.
- In other words, g, p and x make a bend.
- We zig-zag.
- First rotate about $p-x$ and then rotate about $x-g$.

DELETE

- We always splay the node being inserted or searched for.
Q. What about delete?
A. We replace the deleted node with the predecessor or successor.

And we splay the parent of the node being deleted.

Multiple Splay Example

Splay on node c :

*image credit: http://digital.cs.usu.edu/ allan/DS/Notes/Ch22.pdf

